(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, V1) → U12(isNatIListKind(activate(V1)), activate(V1))
U12(tt, V1) → U13(isNatList(activate(V1)))
U13(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V) → U32(isNatIListKind(activate(V)), activate(V))
U32(tt, V) → U33(isNatList(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isNatKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isNat(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNatIList(activate(V2)))
U46(tt) → tt
U51(tt, V2) → U52(isNatIListKind(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt) → tt
U81(tt, V1, V2) → U82(isNatKind(activate(V1)), activate(V1), activate(V2))
U82(tt, V1, V2) → U83(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U83(tt, V1, V2) → U84(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U84(tt, V1, V2) → U85(isNat(activate(V1)), activate(V2))
U85(tt, V2) → U86(isNatList(activate(V2)))
U86(tt) → tt
U91(tt, L, N) → U92(isNatIListKind(activate(L)), activate(L), activate(N))
U92(tt, L, N) → U93(isNat(activate(N)), activate(L), activate(N))
U93(tt, L, N) → U94(isNatKind(activate(N)), activate(L))
U94(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatIListKind(activate(V1)), activate(V1))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatIList(V) → U31(isNatIListKind(activate(V)), activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNatKind(activate(V1)), activate(V1), activate(V2))
isNatIListKind(n__nil) → tt
isNatIListKind(n__zeros) → tt
isNatIListKind(n__cons(V1, V2)) → U51(isNatKind(activate(V1)), activate(V2))
isNatKind(n__0) → tt
isNatKind(n__length(V1)) → U61(isNatIListKind(activate(V1)))
isNatKind(n__s(V1)) → U71(isNatKind(activate(V1)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U81(isNatKind(activate(V1)), activate(V1), activate(V2))
length(nil) → 0
length(cons(N, L)) → U91(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ZEROS → CONS(0, n__zeros)
ZEROS → 01
U111(tt, V1) → U121(isNatIListKind(activate(V1)), activate(V1))
U111(tt, V1) → ISNATILISTKIND(activate(V1))
U111(tt, V1) → ACTIVATE(V1)
U121(tt, V1) → U131(isNatList(activate(V1)))
U121(tt, V1) → ISNATLIST(activate(V1))
U121(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U221(tt, V1) → U231(isNat(activate(V1)))
U221(tt, V1) → ISNAT(activate(V1))
U221(tt, V1) → ACTIVATE(V1)
U311(tt, V) → U321(isNatIListKind(activate(V)), activate(V))
U311(tt, V) → ISNATILISTKIND(activate(V))
U311(tt, V) → ACTIVATE(V)
U321(tt, V) → U331(isNatList(activate(V)))
U321(tt, V) → ISNATLIST(activate(V))
U321(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → U421(isNatKind(activate(V1)), activate(V1), activate(V2))
U411(tt, V1, V2) → ISNATKIND(activate(V1))
U411(tt, V1, V2) → ACTIVATE(V1)
U411(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V1, V2) → U431(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U421(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U421(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V1, V2) → ACTIVATE(V1)
U431(tt, V1, V2) → U441(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U431(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U431(tt, V1, V2) → ACTIVATE(V2)
U431(tt, V1, V2) → ACTIVATE(V1)
U441(tt, V1, V2) → U451(isNat(activate(V1)), activate(V2))
U441(tt, V1, V2) → ISNAT(activate(V1))
U441(tt, V1, V2) → ACTIVATE(V1)
U441(tt, V1, V2) → ACTIVATE(V2)
U451(tt, V2) → U461(isNatIList(activate(V2)))
U451(tt, V2) → ISNATILIST(activate(V2))
U451(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isNatIListKind(activate(V2)))
U511(tt, V2) → ISNATILISTKIND(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U811(tt, V1, V2) → U821(isNatKind(activate(V1)), activate(V1), activate(V2))
U811(tt, V1, V2) → ISNATKIND(activate(V1))
U811(tt, V1, V2) → ACTIVATE(V1)
U811(tt, V1, V2) → ACTIVATE(V2)
U821(tt, V1, V2) → U831(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U821(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U821(tt, V1, V2) → ACTIVATE(V2)
U821(tt, V1, V2) → ACTIVATE(V1)
U831(tt, V1, V2) → U841(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U831(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U831(tt, V1, V2) → ACTIVATE(V2)
U831(tt, V1, V2) → ACTIVATE(V1)
U841(tt, V1, V2) → U851(isNat(activate(V1)), activate(V2))
U841(tt, V1, V2) → ISNAT(activate(V1))
U841(tt, V1, V2) → ACTIVATE(V1)
U841(tt, V1, V2) → ACTIVATE(V2)
U851(tt, V2) → U861(isNatList(activate(V2)))
U851(tt, V2) → ISNATLIST(activate(V2))
U851(tt, V2) → ACTIVATE(V2)
U911(tt, L, N) → U921(isNatIListKind(activate(L)), activate(L), activate(N))
U911(tt, L, N) → ISNATILISTKIND(activate(L))
U911(tt, L, N) → ACTIVATE(L)
U911(tt, L, N) → ACTIVATE(N)
U921(tt, L, N) → U931(isNat(activate(N)), activate(L), activate(N))
U921(tt, L, N) → ISNAT(activate(N))
U921(tt, L, N) → ACTIVATE(N)
U921(tt, L, N) → ACTIVATE(L)
U931(tt, L, N) → U941(isNatKind(activate(N)), activate(L))
U931(tt, L, N) → ISNATKIND(activate(N))
U931(tt, L, N) → ACTIVATE(N)
U931(tt, L, N) → ACTIVATE(L)
U941(tt, L) → S(length(activate(L)))
U941(tt, L) → LENGTH(activate(L))
U941(tt, L) → ACTIVATE(L)
ISNAT(n__length(V1)) → U111(isNatIListKind(activate(V1)), activate(V1))
ISNAT(n__length(V1)) → ISNATILISTKIND(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATILIST(V) → U311(isNatIListKind(activate(V)), activate(V))
ISNATILIST(V) → ISNATILISTKIND(activate(V))
ISNATILIST(V) → ACTIVATE(V)
ISNATILIST(n__cons(V1, V2)) → U411(isNatKind(activate(V1)), activate(V1), activate(V2))
ISNATILIST(n__cons(V1, V2)) → ISNATKIND(activate(V1))
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILIST(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATILISTKIND(n__cons(V1, V2)) → U511(isNatKind(activate(V1)), activate(V2))
ISNATILISTKIND(n__cons(V1, V2)) → ISNATKIND(activate(V1))
ISNATILISTKIND(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILISTKIND(n__cons(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__length(V1)) → U611(isNatIListKind(activate(V1)))
ISNATKIND(n__length(V1)) → ISNATILISTKIND(activate(V1))
ISNATKIND(n__length(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → U711(isNatKind(activate(V1)))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → U811(isNatKind(activate(V1)), activate(V1), activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNATKIND(activate(V1))
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
LENGTH(nil) → 01
LENGTH(cons(N, L)) → U911(isNatList(activate(L)), activate(L), N)
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
LENGTH(cons(N, L)) → ACTIVATE(L)
ACTIVATE(n__zeros) → ZEROS
ACTIVATE(n__0) → 01
ACTIVATE(n__length(X)) → LENGTH(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__nil) → NIL
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, V1) → U12(isNatIListKind(activate(V1)), activate(V1))
U12(tt, V1) → U13(isNatList(activate(V1)))
U13(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V) → U32(isNatIListKind(activate(V)), activate(V))
U32(tt, V) → U33(isNatList(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isNatKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isNat(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNatIList(activate(V2)))
U46(tt) → tt
U51(tt, V2) → U52(isNatIListKind(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt) → tt
U81(tt, V1, V2) → U82(isNatKind(activate(V1)), activate(V1), activate(V2))
U82(tt, V1, V2) → U83(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U83(tt, V1, V2) → U84(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U84(tt, V1, V2) → U85(isNat(activate(V1)), activate(V2))
U85(tt, V2) → U86(isNatList(activate(V2)))
U86(tt) → tt
U91(tt, L, N) → U92(isNatIListKind(activate(L)), activate(L), activate(N))
U92(tt, L, N) → U93(isNat(activate(N)), activate(L), activate(N))
U93(tt, L, N) → U94(isNatKind(activate(N)), activate(L))
U94(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatIListKind(activate(V1)), activate(V1))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatIList(V) → U31(isNatIListKind(activate(V)), activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNatKind(activate(V1)), activate(V1), activate(V2))
isNatIListKind(n__nil) → tt
isNatIListKind(n__zeros) → tt
isNatIListKind(n__cons(V1, V2)) → U51(isNatKind(activate(V1)), activate(V2))
isNatKind(n__0) → tt
isNatKind(n__length(V1)) → U61(isNatIListKind(activate(V1)))
isNatKind(n__s(V1)) → U71(isNatKind(activate(V1)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U81(isNatKind(activate(V1)), activate(V1), activate(V2))
length(nil) → 0
length(cons(N, L)) → U91(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 41 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__length(X)) → LENGTH(X)
LENGTH(cons(N, L)) → U911(isNatList(activate(L)), activate(L), N)
U911(tt, L, N) → U921(isNatIListKind(activate(L)), activate(L), activate(N))
U921(tt, L, N) → U931(isNat(activate(N)), activate(L), activate(N))
U931(tt, L, N) → U941(isNatKind(activate(N)), activate(L))
U941(tt, L) → LENGTH(activate(L))
LENGTH(cons(N, L)) → ISNATLIST(activate(L))
ISNATLIST(n__cons(V1, V2)) → U811(isNatKind(activate(V1)), activate(V1), activate(V2))
U811(tt, V1, V2) → U821(isNatKind(activate(V1)), activate(V1), activate(V2))
U821(tt, V1, V2) → U831(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U831(tt, V1, V2) → U841(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U841(tt, V1, V2) → U851(isNat(activate(V1)), activate(V2))
U851(tt, V2) → ISNATLIST(activate(V2))
ISNATLIST(n__cons(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__length(V1)) → ISNATILISTKIND(activate(V1))
ISNATILISTKIND(n__cons(V1, V2)) → U511(isNatKind(activate(V1)), activate(V2))
U511(tt, V2) → ISNATILISTKIND(activate(V2))
ISNATILISTKIND(n__cons(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__length(V1)) → ACTIVATE(V1)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNATILISTKIND(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATILISTKIND(n__cons(V1, V2)) → ACTIVATE(V2)
U511(tt, V2) → ACTIVATE(V2)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V1)
ISNATLIST(n__cons(V1, V2)) → ACTIVATE(V2)
U851(tt, V2) → ACTIVATE(V2)
U841(tt, V1, V2) → ISNAT(activate(V1))
ISNAT(n__length(V1)) → U111(isNatIListKind(activate(V1)), activate(V1))
U111(tt, V1) → U121(isNatIListKind(activate(V1)), activate(V1))
U121(tt, V1) → ISNATLIST(activate(V1))
U121(tt, V1) → ACTIVATE(V1)
U111(tt, V1) → ISNATILISTKIND(activate(V1))
U111(tt, V1) → ACTIVATE(V1)
ISNAT(n__length(V1)) → ISNATILISTKIND(activate(V1))
ISNAT(n__length(V1)) → ACTIVATE(V1)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U841(tt, V1, V2) → ACTIVATE(V1)
U841(tt, V1, V2) → ACTIVATE(V2)
U831(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U831(tt, V1, V2) → ACTIVATE(V2)
U831(tt, V1, V2) → ACTIVATE(V1)
U821(tt, V1, V2) → ISNATILISTKIND(activate(V2))
U821(tt, V1, V2) → ACTIVATE(V2)
U821(tt, V1, V2) → ACTIVATE(V1)
U811(tt, V1, V2) → ISNATKIND(activate(V1))
U811(tt, V1, V2) → ACTIVATE(V1)
U811(tt, V1, V2) → ACTIVATE(V2)
LENGTH(cons(N, L)) → ACTIVATE(L)
U941(tt, L) → ACTIVATE(L)
U931(tt, L, N) → ISNATKIND(activate(N))
U931(tt, L, N) → ACTIVATE(N)
U931(tt, L, N) → ACTIVATE(L)
U921(tt, L, N) → ISNAT(activate(N))
U921(tt, L, N) → ACTIVATE(N)
U921(tt, L, N) → ACTIVATE(L)
U911(tt, L, N) → ISNATILISTKIND(activate(L))
U911(tt, L, N) → ACTIVATE(L)
U911(tt, L, N) → ACTIVATE(N)
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, V1) → U12(isNatIListKind(activate(V1)), activate(V1))
U12(tt, V1) → U13(isNatList(activate(V1)))
U13(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V) → U32(isNatIListKind(activate(V)), activate(V))
U32(tt, V) → U33(isNatList(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isNatKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isNat(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNatIList(activate(V2)))
U46(tt) → tt
U51(tt, V2) → U52(isNatIListKind(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt) → tt
U81(tt, V1, V2) → U82(isNatKind(activate(V1)), activate(V1), activate(V2))
U82(tt, V1, V2) → U83(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U83(tt, V1, V2) → U84(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U84(tt, V1, V2) → U85(isNat(activate(V1)), activate(V2))
U85(tt, V2) → U86(isNatList(activate(V2)))
U86(tt) → tt
U91(tt, L, N) → U92(isNatIListKind(activate(L)), activate(L), activate(N))
U92(tt, L, N) → U93(isNat(activate(N)), activate(L), activate(N))
U93(tt, L, N) → U94(isNatKind(activate(N)), activate(L))
U94(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatIListKind(activate(V1)), activate(V1))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatIList(V) → U31(isNatIListKind(activate(V)), activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNatKind(activate(V1)), activate(V1), activate(V2))
isNatIListKind(n__nil) → tt
isNatIListKind(n__zeros) → tt
isNatIListKind(n__cons(V1, V2)) → U51(isNatKind(activate(V1)), activate(V2))
isNatKind(n__0) → tt
isNatKind(n__length(V1)) → U61(isNatIListKind(activate(V1)))
isNatKind(n__s(V1)) → U71(isNatKind(activate(V1)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U81(isNatKind(activate(V1)), activate(V1), activate(V2))
length(nil) → 0
length(cons(N, L)) → U91(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U441(tt, V1, V2) → U451(isNat(activate(V1)), activate(V2))
U451(tt, V2) → ISNATILIST(activate(V2))
ISNATILIST(n__cons(V1, V2)) → U411(isNatKind(activate(V1)), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isNatKind(activate(V1)), activate(V1), activate(V2))
U421(tt, V1, V2) → U431(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U431(tt, V1, V2) → U441(isNatIListKind(activate(V2)), activate(V1), activate(V2))
The TRS R consists of the following rules:
zeros → cons(0, n__zeros)
U11(tt, V1) → U12(isNatIListKind(activate(V1)), activate(V1))
U12(tt, V1) → U13(isNatList(activate(V1)))
U13(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V) → U32(isNatIListKind(activate(V)), activate(V))
U32(tt, V) → U33(isNatList(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isNatKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isNat(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNatIList(activate(V2)))
U46(tt) → tt
U51(tt, V2) → U52(isNatIListKind(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt) → tt
U81(tt, V1, V2) → U82(isNatKind(activate(V1)), activate(V1), activate(V2))
U82(tt, V1, V2) → U83(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U83(tt, V1, V2) → U84(isNatIListKind(activate(V2)), activate(V1), activate(V2))
U84(tt, V1, V2) → U85(isNat(activate(V1)), activate(V2))
U85(tt, V2) → U86(isNatList(activate(V2)))
U86(tt) → tt
U91(tt, L, N) → U92(isNatIListKind(activate(L)), activate(L), activate(N))
U92(tt, L, N) → U93(isNat(activate(N)), activate(L), activate(N))
U93(tt, L, N) → U94(isNatKind(activate(N)), activate(L))
U94(tt, L) → s(length(activate(L)))
isNat(n__0) → tt
isNat(n__length(V1)) → U11(isNatIListKind(activate(V1)), activate(V1))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatIList(V) → U31(isNatIListKind(activate(V)), activate(V))
isNatIList(n__zeros) → tt
isNatIList(n__cons(V1, V2)) → U41(isNatKind(activate(V1)), activate(V1), activate(V2))
isNatIListKind(n__nil) → tt
isNatIListKind(n__zeros) → tt
isNatIListKind(n__cons(V1, V2)) → U51(isNatKind(activate(V1)), activate(V2))
isNatKind(n__0) → tt
isNatKind(n__length(V1)) → U61(isNatIListKind(activate(V1)))
isNatKind(n__s(V1)) → U71(isNatKind(activate(V1)))
isNatList(n__nil) → tt
isNatList(n__cons(V1, V2)) → U81(isNatKind(activate(V1)), activate(V1), activate(V2))
length(nil) → 0
length(cons(N, L)) → U91(isNatList(activate(L)), activate(L), N)
zeros → n__zeros
0 → n__0
length(X) → n__length(X)
s(X) → n__s(X)
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
activate(n__zeros) → zeros
activate(n__0) → 0
activate(n__length(X)) → length(X)
activate(n__s(X)) → s(X)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__nil) → nil
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.