(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, N, XS)) → U121(tt, N, XS)
ACTIVE(U12(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U12(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U21(tt, X)) → U221(tt, X)
ACTIVE(U31(tt, N)) → U321(tt, N)
ACTIVE(U41(tt, N, XS)) → U421(tt, N, XS)
ACTIVE(U42(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U42(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U51(tt, Y)) → U521(tt, Y)
ACTIVE(U61(tt, N, X, XS)) → U621(tt, N, X, XS)
ACTIVE(U62(tt, N, X, XS)) → U631(tt, N, X, XS)
ACTIVE(U63(tt, N, X, XS)) → U641(splitAt(N, XS), X)
ACTIVE(U63(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U64(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U64(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(U71(tt, XS)) → U721(tt, XS)
ACTIVE(U81(tt, N, XS)) → U821(tt, N, XS)
ACTIVE(U82(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U82(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(afterNth(N, XS)) → U111(tt, N, XS)
ACTIVE(fst(pair(X, Y))) → U211(tt, X)
ACTIVE(head(cons(N, XS))) → U311(tt, N)
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(sel(N, XS)) → U411(tt, N, XS)
ACTIVE(snd(pair(X, Y))) → U511(tt, Y)
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U611(tt, N, X, XS)
ACTIVE(tail(cons(N, XS))) → U711(tt, XS)
ACTIVE(take(N, XS)) → U811(tt, N, XS)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → SND(active(X))
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → U321(active(X1), X2)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → U421(active(X1), X2, X3)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → U611(active(X1), X2, X3, X4)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → U621(active(X1), X2, X3, X4)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → U631(active(X1), X2, X3, X4)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → U641(active(X1), X2)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → U721(active(X1), X2)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → U811(active(X1), X2, X3)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → U821(active(X1), X2, X3)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
SND(mark(X)) → SND(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U421(mark(X1), X2, X3) → U421(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)
U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)
U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)
U641(mark(X1), X2) → U641(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U721(mark(X1), X2) → U721(X1, X2)
U811(mark(X1), X2, X3) → U811(X1, X2, X3)
U821(mark(X1), X2, X3) → U821(X1, X2, X3)
FST(mark(X)) → FST(X)
NATSFROM(mark(X)) → NATSFROM(X)
S(mark(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → SND(proper(X))
PROPER(snd(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → U321(proper(X1), proper(X2))
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → U421(proper(X1), proper(X2), proper(X3))
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → U611(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → U621(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → U631(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → U641(proper(X1), proper(X2))
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → U721(proper(X1), proper(X2))
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → U811(proper(X1), proper(X2), proper(X3))
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → U821(proper(X1), proper(X2), proper(X3))
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → FST(proper(X))
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
SND(ok(X)) → SND(X)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X1), ok(X2)) → U321(X1, X2)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
HEAD(ok(X)) → HEAD(X)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)
U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
U641(ok(X1), ok(X2)) → U641(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
U721(ok(X1), ok(X2)) → U721(X1, X2)
U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
FST(ok(X)) → FST(X)
NATSFROM(ok(X)) → NATSFROM(X)
S(ok(X)) → S(X)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TAIL(ok(X)) → TAIL(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 33 SCCs with 98 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[TAKE1, ok1]

Status:
TAKE1: [1]
mark1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[SEL1, ok1]

Status:
SEL1: [1]
mark1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(ok(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(46) TRUE

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
U821(mark(X1), X2, X3) → U821(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2, x3)  =  U821(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U82^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2, X3) → U821(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2, X3) → U821(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U82^13, mark1]

Status:
U82^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(53) TRUE

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
U811(mark(X1), X2, X3) → U811(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3)  =  U811(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U81^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3) → U811(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3) → U811(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U81^13, mark1]

Status:
U81^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) TRUE

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X1), ok(X2)) → U721(X1, X2)
U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(ok(X1), ok(X2)) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2)  =  U721(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U72^11
mark1 > U72^11

Status:
U72^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X1), X2) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U71^11
mark1 > U71^11

Status:
U71^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(74) TRUE

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > CONS1
mark1 > CONS1

Status:
CONS1: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[PAIR1, ok1]

Status:
PAIR1: [1]
mark1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(ok(X1), ok(X2)) → U641(X1, X2)
U641(mark(X1), X2) → U641(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(ok(X1), ok(X2)) → U641(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2)  =  U641(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U64^11
mark1 > U64^11

Status:
U64^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(mark(X1), X2) → U641(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2) → U641(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(95) TRUE

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3, x4)  =  U631(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U63^11

Status:
U63^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U63^14, mark1]

Status:
U63^14: [2,3,4,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(102) TRUE

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3, x4)  =  U621(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U62^11

Status:
U62^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U62^14, mark1]

Status:
U62^14: [2,3,4,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(109) TRUE

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3, x4)  =  U611(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U61^11

Status:
U61^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U61^14, mark1]

Status:
U61^14: [2,3,4,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(116) TRUE

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U52^11
mark1 > U52^11

Status:
U52^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(123) TRUE

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U51^11
mark1 > U51^11

Status:
U51^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(128) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(130) TRUE

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AFTERNTH1, ok1]

Status:
AFTERNTH1: [1]
mark1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(137) TRUE

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(144) TRUE

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
U421(mark(X1), X2, X3) → U421(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2, x3)  =  U421(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U42^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2, X3) → U421(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X1), X2, X3) → U421(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U42^13, mark1]

Status:
U42^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(149) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(151) TRUE

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U41^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U41^13, mark1]

Status:
U41^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(158) TRUE

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X1), ok(X2)) → U321(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X1), ok(X2)) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1, x2)  =  U321(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U32^11
mark1 > U32^11

Status:
U32^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X1), X2) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(163) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(165) TRUE

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U31^11
mark1 > U31^11

Status:
U31^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(172) TRUE

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U22^11
mark1 > U22^11

Status:
U22^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(177) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(179) TRUE

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
ok1 > U21^11
mark1 > U21^11

Status:
U21^11: [1]
ok1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(184) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(186) TRUE

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(188) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[SPLITAT1, ok1]

Status:
SPLITAT1: [1]
mark1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(190) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(191) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(193) TRUE

(194) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(ok(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(195) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(ok(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(196) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(197) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(198) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(199) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(200) TRUE

(201) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(202) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U12^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(203) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(204) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U12^13, mark1]

Status:
U12^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(205) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(206) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(207) TRUE

(208) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(209) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U11^11: [1]
ok1: [1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(210) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(211) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11^13, mark1]

Status:
U11^13: [2,1,3]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(212) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(213) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(214) TRUE

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
snd(x1)  =  snd(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  U22(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U32(x1, x2)  =  U32(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3, x4)  =  U61(x1, x2, x3, x4)
U62(x1, x2, x3, x4)  =  U62(x1, x2, x3, x4)
U63(x1, x2, x3, x4)  =  U63(x1, x2, x3, x4)
U64(x1, x2)  =  U64(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
fst(x1)  =  fst(x1)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U113: [3,1,2]
U123: [3,1,2]
snd1: [1]
splitAt2: [1,2]
U212: [1,2]
U222: [1,2]
U312: [1,2]
U322: [1,2]
U413: [3,1,2]
U423: [3,1,2]
head1: [1]
afterNth2: [1,2]
U512: [1,2]
U522: [1,2]
U614: [1,2,4,3]
U624: [1,2,4,3]
U634: [1,2,4,3]
U642: [1,2]
pair2: [1,2]
cons2: [1,2]
U712: [1,2]
U722: [1,2]
U813: [3,1,2]
U823: [3,1,2]
fst1: [1]
natsFrom1: [1]
s1: [1]
sel2: [1,2]
take2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(218) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
tail(x1)  =  tail(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
tail1: [1]


The following usable rules [FROCOS05] were oriented: none

(219) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(220) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(221) TRUE

(222) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(223) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U12(x1, x2, x3)  =  U12(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x1, x2)
snd(x1)  =  snd(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U21(x1, x2)  =  U21(x1)
U22(x1, x2)  =  U22(x1)
U31(x1, x2)  =  U31(x1)
U32(x1, x2)  =  U32(x1)
U41(x1, x2, x3)  =  U41(x1, x2)
U42(x1, x2, x3)  =  U42(x1, x2)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U51(x1, x2)  =  U51(x1)
U52(x1, x2)  =  U52(x1)
U61(x1, x2, x3, x4)  =  U61(x1, x2, x3, x4)
U62(x1, x2, x3, x4)  =  U62(x1, x2, x3, x4)
U63(x1, x2, x3, x4)  =  U63(x1, x2, x3, x4)
U64(x1, x2)  =  U64(x1)
pair(x1, x2)  =  pair(x1, x2)
cons(x1, x2)  =  cons(x1)
U71(x1, x2)  =  U71(x1)
U72(x1, x2)  =  U72(x1)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
fst(x1)  =  fst(x1)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U123: [1,3,2]
U112: [1,2]
snd1: [1]
splitAt2: [1,2]
U211: [1]
U221: [1]
U311: [1]
U321: [1]
U412: [2,1]
U422: [1,2]
head1: [1]
afterNth2: [1,2]
U511: [1]
U521: [1]
U614: [3,4,2,1]
U624: [3,4,2,1]
U634: [3,4,2,1]
U641: [1]
pair2: [1,2]
cons1: [1]
U711: [1]
U721: [1]
U813: [1,3,2]
U823: [1,3,2]
fst1: [1]
natsFrom1: [1]
s1: [1]
sel2: [1,2]
tail1: [1]
take2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(224) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(225) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(226) TRUE

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.