(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, N, XS)) → U121(tt, N, XS)
ACTIVE(U12(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U12(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U21(tt, X)) → U221(tt, X)
ACTIVE(U31(tt, N)) → U321(tt, N)
ACTIVE(U41(tt, N, XS)) → U421(tt, N, XS)
ACTIVE(U42(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U42(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U51(tt, Y)) → U521(tt, Y)
ACTIVE(U61(tt, N, X, XS)) → U621(tt, N, X, XS)
ACTIVE(U62(tt, N, X, XS)) → U631(tt, N, X, XS)
ACTIVE(U63(tt, N, X, XS)) → U641(splitAt(N, XS), X)
ACTIVE(U63(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U64(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U64(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(U71(tt, XS)) → U721(tt, XS)
ACTIVE(U81(tt, N, XS)) → U821(tt, N, XS)
ACTIVE(U82(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U82(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(afterNth(N, XS)) → U111(tt, N, XS)
ACTIVE(fst(pair(X, Y))) → U211(tt, X)
ACTIVE(head(cons(N, XS))) → U311(tt, N)
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(sel(N, XS)) → U411(tt, N, XS)
ACTIVE(snd(pair(X, Y))) → U511(tt, Y)
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U611(tt, N, X, XS)
ACTIVE(tail(cons(N, XS))) → U711(tt, XS)
ACTIVE(take(N, XS)) → U811(tt, N, XS)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2, X3)) → U121(active(X1), X2, X3)
ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → SND(active(X))
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → U221(active(X1), X2)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → U321(active(X1), X2)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → U421(active(X1), X2, X3)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2)) → U511(active(X1), X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → U521(active(X1), X2)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → U611(active(X1), X2, X3, X4)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → U621(active(X1), X2, X3, X4)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → U631(active(X1), X2, X3, X4)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → U641(active(X1), X2)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → U721(active(X1), X2)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → U811(active(X1), X2, X3)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → U821(active(X1), X2, X3)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)
SND(mark(X)) → SND(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
U421(mark(X1), X2, X3) → U421(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)
U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)
U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)
U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)
U641(mark(X1), X2) → U641(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U721(mark(X1), X2) → U721(X1, X2)
U811(mark(X1), X2, X3) → U811(X1, X2, X3)
U821(mark(X1), X2, X3) → U821(X1, X2, X3)
FST(mark(X)) → FST(X)
NATSFROM(mark(X)) → NATSFROM(X)
S(mark(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → U121(proper(X1), proper(X2), proper(X3))
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → SND(proper(X))
PROPER(snd(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → U221(proper(X1), proper(X2))
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → U321(proper(X1), proper(X2))
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → U421(proper(X1), proper(X2), proper(X3))
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → U511(proper(X1), proper(X2))
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → U521(proper(X1), proper(X2))
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → U611(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → U621(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → U631(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → U641(proper(X1), proper(X2))
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → U721(proper(X1), proper(X2))
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → U811(proper(X1), proper(X2), proper(X3))
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → U821(proper(X1), proper(X2), proper(X3))
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → FST(proper(X))
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
SND(ok(X)) → SND(X)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X1), ok(X2)) → U221(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U321(ok(X1), ok(X2)) → U321(X1, X2)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
HEAD(ok(X)) → HEAD(X)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
U511(ok(X1), ok(X2)) → U511(X1, X2)
U521(ok(X1), ok(X2)) → U521(X1, X2)
U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
U641(ok(X1), ok(X2)) → U641(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
U721(ok(X1), ok(X2)) → U721(X1, X2)
U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
FST(ok(X)) → FST(X)
NATSFROM(ok(X)) → NATSFROM(X)
S(ok(X)) → S(X)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TAIL(ok(X)) → TAIL(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 33 SCCs with 98 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > TAKE1
ok1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > TAIL1

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > SEL1
ok1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > S1

The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(ok(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  NATSFROM(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > NATSFROM1

The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  FST(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > FST1

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
U821(mark(X1), X2, X3) → U821(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(ok(X1), ok(X2), ok(X3)) → U821(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2, x3)  =  U821(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U82^11
mark > U82^11

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2, X3) → U821(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2, X3) → U821(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
U811(mark(X1), X2, X3) → U811(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X1), ok(X2), ok(X3)) → U811(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3)  =  U811(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U81^11
mark > U81^11

The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3) → U811(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3) → U811(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(64) TRUE

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(ok(X1), ok(X2)) → U721(X1, X2)
U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(ok(X1), ok(X2)) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U721(x1, x2)  =  U721(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U72^11

The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U721(mark(X1), X2) → U721(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U721(mark(X1), X2) → U721(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U71^11

The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(78) TRUE

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > CONS1

The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > PAIR1
ok1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(94) TRUE

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(ok(X1), ok(X2)) → U641(X1, X2)
U641(mark(X1), X2) → U641(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(ok(X1), ok(X2)) → U641(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U641(x1, x2)  =  U641(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U64^11

The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U641(mark(X1), X2) → U641(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U641(mark(X1), X2) → U641(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(101) TRUE

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(ok(X1), ok(X2), ok(X3), ok(X4)) → U631(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3, x4)  =  U631(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U63^11
mark > U63^11

The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(mark(X1), X2, X3, X4) → U631(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U631(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(108) TRUE

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(ok(X1), ok(X2), ok(X3), ok(X4)) → U621(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3, x4)  =  U621(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U62^11
mark > U62^11

The following usable rules [FROCOS05] were oriented: none

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U621(mark(X1), X2, X3, X4) → U621(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U621(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(113) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(115) TRUE

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2), ok(X3), ok(X4)) → U611(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3, x4)  =  U611(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U61^11
mark > U61^11

The following usable rules [FROCOS05] were oriented: none

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2, X3, X4) → U611(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(120) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(121) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(122) TRUE

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(ok(X1), ok(X2)) → U521(X1, X2)
U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(ok(X1), ok(X2)) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U521(x1, x2)  =  U521(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U52^11

The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U521(mark(X1), X2) → U521(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U521(mark(X1), X2) → U521(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(129) TRUE

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2)) → U511(X1, X2)
U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2)) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2)  =  U511(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U51^11

The following usable rules [FROCOS05] were oriented: none

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2) → U511(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2) → U511(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(134) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(135) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(136) TRUE

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > AFTERNTH1
ok1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(145) TRUE

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(147) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > HEAD1

The following usable rules [FROCOS05] were oriented: none

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(152) TRUE

(153) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
U421(mark(X1), X2, X3) → U421(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(154) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(ok(X1), ok(X2), ok(X3)) → U421(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2, x3)  =  U421(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U42^11
mark > U42^11

The following usable rules [FROCOS05] were oriented: none

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(mark(X1), X2, X3) → U421(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U421(mark(X1), X2, X3) → U421(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U421(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(157) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(159) TRUE

(160) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U41^11
mark > U41^11

The following usable rules [FROCOS05] were oriented: none

(162) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(164) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(166) TRUE

(167) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(ok(X1), ok(X2)) → U321(X1, X2)
U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(168) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(ok(X1), ok(X2)) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U321(x1, x2)  =  U321(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U32^11

The following usable rules [FROCOS05] were oriented: none

(169) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U321(mark(X1), X2) → U321(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(170) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U321(mark(X1), X2) → U321(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(171) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(172) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(173) TRUE

(174) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(175) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(176) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(177) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(178) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(179) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(180) TRUE

(181) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X1), ok(X2)) → U221(X1, X2)
U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(182) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X1), ok(X2)) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1, x2)  =  U221(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U22^11

The following usable rules [FROCOS05] were oriented: none

(183) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X1), X2) → U221(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(184) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X1), X2) → U221(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(185) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(186) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(187) TRUE

(188) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(190) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(191) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(192) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(193) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(194) TRUE

(195) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
mark1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(197) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(198) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark
ok(x1)  =  ok(x1)

Lexicographic Path Order [LPO].
Precedence:
mark > SPLITAT1
ok1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(199) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(200) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(201) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(202) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(203) TRUE

(204) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(ok(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(ok(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  SND(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
ok1 > SND1

The following usable rules [FROCOS05] were oriented: none

(206) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(207) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(208) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(209) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(210) TRUE

(211) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(212) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2), ok(X3)) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U12^11
mark > U12^11

The following usable rules [FROCOS05] were oriented: none

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2, X3) → U121(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(214) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2, X3) → U121(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(215) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(217) TRUE

(218) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(219) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Lexicographic Path Order [LPO].
Precedence:
ok1 > U11^11
mark > U11^11

The following usable rules [FROCOS05] were oriented: none

(220) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(221) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(222) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(223) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(224) TRUE

(225) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(226) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2, X3)) → PROPER(X1)
PROPER(U12(X1, X2, X3)) → PROPER(X2)
PROPER(U12(X1, X2, X3)) → PROPER(X3)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X1, X2)) → PROPER(X1)
PROPER(U22(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U32(X1, X2)) → PROPER(X1)
PROPER(U32(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(U42(X1, X2, X3)) → PROPER(X1)
PROPER(U42(X1, X2, X3)) → PROPER(X2)
PROPER(U42(X1, X2, X3)) → PROPER(X3)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2)) → PROPER(X1)
PROPER(U51(X1, X2)) → PROPER(X2)
PROPER(U52(X1, X2)) → PROPER(X1)
PROPER(U52(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U61(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U62(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U63(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U64(X1, X2)) → PROPER(X1)
PROPER(U64(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(U72(X1, X2)) → PROPER(X1)
PROPER(U72(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X1)
PROPER(U81(X1, X2, X3)) → PROPER(X2)
PROPER(U81(X1, X2, X3)) → PROPER(X3)
PROPER(U82(X1, X2, X3)) → PROPER(X1)
PROPER(U82(X1, X2, X3)) → PROPER(X2)
PROPER(U82(X1, X2, X3)) → PROPER(X3)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
snd(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  U22(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U32(x1, x2)  =  U32(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  U52(x1, x2)
U61(x1, x2, x3, x4)  =  U61(x1, x2, x3, x4)
U62(x1, x2, x3, x4)  =  U62(x1, x2, x3, x4)
U63(x1, x2, x3, x4)  =  U63(x1, x2, x3, x4)
U64(x1, x2)  =  U64(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(fst(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(228) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(natsFrom(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
snd(x1)  =  x1
head(x1)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
tail(x1)  =  tail(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(229) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(fst(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(230) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(snd(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
snd(x1)  =  snd(x1)
head(x1)  =  x1
fst(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
snd1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(231) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
PROPER(fst(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(232) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  x1
fst(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(233) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
PROPER(fst(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(234) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  head(x1)
fst(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
head1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(235) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(fst(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(236) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(fst(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
fst(x1)  =  fst(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(237) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(238) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(239) TRUE

(240) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(241) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  x1
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1, x2)
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(242) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(243) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U123 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(244) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(245) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U113 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(246) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(247) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(snd(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
snd1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(248) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(249) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  x1
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U212 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(250) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U22(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(251) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U22(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U22(x1, x2)  =  U22(x1, x2)
U31(x1, x2)  =  x1
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U222 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(252) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(253) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U312 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(254) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U32(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(255) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U32(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U32(x1, x2)  =  U32(x1, x2)
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U322 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(256) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(257) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U41(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
tail(x1)  =  tail(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(258) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(259) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2, x3)  =  x1
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U413 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(260) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(261) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U42(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
head(x1)  =  x1
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U423 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(262) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(263) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
head(x1)  =  head(x1)
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
head1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(264) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(265) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U63(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  x1
U62(x1, x2, x3, x4)  =  x1
U63(x1, x2, x3, x4)  =  U63(x1, x2, x3, x4)
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(266) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(267) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U61(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  x1
U52(x1, x2)  =  x1
U61(x1, x2, x3, x4)  =  U61(x1, x2, x3, x4)
U62(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(268) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2)) → ACTIVE(X1)
ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(269) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2)  =  U51(x1, x2)
U52(x1, x2)  =  x1
U62(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U512 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(270) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U52(X1, X2)) → ACTIVE(X1)
ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(271) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U52(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U52(x1, x2)  =  U52(x1, x2)
U62(x1, x2, x3, x4)  =  x1
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(272) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(273) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U62(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U62(x1, x2, x3, x4)  =  U62(x1, x2, x3, x4)
U64(x1, x2)  =  x1
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U624 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(274) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U64(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(275) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U64(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U64(x1, x2)  =  U64(x1, x2)
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
U642 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(276) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(277) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(278) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(279) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  cons(x1, x2)
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  x1
fst(x1)  =  x1
natsFrom(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(280) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(281) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U82(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U71(x1, x2)  =  x1
U72(x1, x2)  =  x1
U81(x1, x2, x3)  =  x1
U82(x1, x2, x3)  =  U82(x1, x2, x3)
fst(x1)  =  x1
natsFrom(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(282) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(natsFrom(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(283) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U72(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U71(x1, x2)  =  x1
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
fst(x1)  =  x1
natsFrom(x1)  =  natsFrom(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(284) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(fst(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(285) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U71(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U71(x1, x2)  =  U71(x1, x2)
fst(x1)  =  x1

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(286) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(287) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fst(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fst(x1)  =  fst(x1)

Lexicographic Path Order [LPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(288) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(289) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(290) TRUE

(291) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, N, XS)) → mark(U12(tt, N, XS))
active(U12(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(U22(tt, X))
active(U22(tt, X)) → mark(X)
active(U31(tt, N)) → mark(U32(tt, N))
active(U32(tt, N)) → mark(N)
active(U41(tt, N, XS)) → mark(U42(tt, N, XS))
active(U42(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U51(tt, Y)) → mark(U52(tt, Y))
active(U52(tt, Y)) → mark(Y)
active(U61(tt, N, X, XS)) → mark(U62(tt, N, X, XS))
active(U62(tt, N, X, XS)) → mark(U63(tt, N, X, XS))
active(U63(tt, N, X, XS)) → mark(U64(splitAt(N, XS), X))
active(U64(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U71(tt, XS)) → mark(U72(tt, XS))
active(U72(tt, XS)) → mark(XS)
active(U81(tt, N, XS)) → mark(U82(tt, N, XS))
active(U82(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(U11(tt, N, XS))
active(fst(pair(X, Y))) → mark(U21(tt, X))
active(head(cons(N, XS))) → mark(U31(tt, N))
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(U41(tt, N, XS))
active(snd(pair(X, Y))) → mark(U51(tt, Y))
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U61(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(U71(tt, XS))
active(take(N, XS)) → mark(U81(tt, N, XS))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2, X3)) → U12(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X1, X2)) → U32(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2, X3)) → U42(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U51(X1, X2)) → U51(active(X1), X2)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U61(X1, X2, X3, X4)) → U61(active(X1), X2, X3, X4)
active(U62(X1, X2, X3, X4)) → U62(active(X1), X2, X3, X4)
active(U63(X1, X2, X3, X4)) → U63(active(X1), X2, X3, X4)
active(U64(X1, X2)) → U64(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(cons(X1, X2)) → cons(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X1, X2)) → U72(active(X1), X2)
active(U81(X1, X2, X3)) → U81(active(X1), X2, X3)
active(U82(X1, X2, X3)) → U82(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2, X3) → mark(U12(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X1), X2) → mark(U22(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X1), X2) → mark(U32(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2, X3) → mark(U42(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U51(mark(X1), X2) → mark(U51(X1, X2))
U52(mark(X1), X2) → mark(U52(X1, X2))
U61(mark(X1), X2, X3, X4) → mark(U61(X1, X2, X3, X4))
U62(mark(X1), X2, X3, X4) → mark(U62(X1, X2, X3, X4))
U63(mark(X1), X2, X3, X4) → mark(U63(X1, X2, X3, X4))
U64(mark(X1), X2) → mark(U64(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X1), X2) → mark(U72(X1, X2))
U81(mark(X1), X2, X3) → mark(U81(X1, X2, X3))
U82(mark(X1), X2, X3) → mark(U82(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2, X3)) → U12(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X1, X2)) → U32(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2, X3)) → U42(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U51(X1, X2)) → U51(proper(X1), proper(X2))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U61(X1, X2, X3, X4)) → U61(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U62(X1, X2, X3, X4)) → U62(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U63(X1, X2, X3, X4)) → U63(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U64(X1, X2)) → U64(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X1, X2)) → U72(proper(X1), proper(X2))
proper(U81(X1, X2, X3)) → U81(proper(X1), proper(X2), proper(X3))
proper(U82(X1, X2, X3)) → U82(proper(X1), proper(X2), proper(X3))
proper(fst(X)) → fst(proper(X))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(0) → ok(0)
proper(nil) → ok(nil)
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2), ok(X3)) → ok(U12(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X1), ok(X2)) → ok(U32(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2), ok(X3)) → ok(U42(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U51(ok(X1), ok(X2)) → ok(U51(X1, X2))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U61(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U61(X1, X2, X3, X4))
U62(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U62(X1, X2, X3, X4))
U63(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U63(X1, X2, X3, X4))
U64(ok(X1), ok(X2)) → ok(U64(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X1), ok(X2)) → ok(U72(X1, X2))
U81(ok(X1), ok(X2), ok(X3)) → ok(U81(X1, X2, X3))
U82(ok(X1), ok(X2), ok(X3)) → ok(U82(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.