(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, N, X, XS)) → MARK(U12(splitAt(N, XS), X))
ACTIVE(U11(tt, N, X, XS)) → U121(splitAt(N, XS), X)
ACTIVE(U11(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U12(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(U12(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U12(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(fst(pair(X, Y))) → MARK(X)
ACTIVE(head(cons(N, XS))) → MARK(N)
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(snd(pair(X, Y))) → MARK(Y)
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U11(tt, N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U111(tt, N, X, XS)
ACTIVE(tail(cons(N, XS))) → MARK(XS)
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
MARK(U11(X1, X2, X3, X4)) → ACTIVE(U11(mark(X1), X2, X3, X4))
MARK(U11(X1, X2, X3, X4)) → U111(mark(X1), X2, X3, X4)
MARK(U11(X1, X2, X3, X4)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(nil) → ACTIVE(nil)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 16 SCCs with 33 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > TAKE1

Status:
TAKE1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > TAKE2

Status:
TAKE2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(active(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > TAIL1

Status:
TAIL1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > SEL1

Status:
SEL1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > SEL2

Status:
SEL2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > S1

Status:
S1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(active(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > NATSFROM1

Status:
NATSFROM1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(43) TRUE

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(active(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > HEAD1

Status:
HEAD1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(50) TRUE

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(active(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > FST1

Status:
FST1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > AND1

Status:
AND1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > AND2

Status:
AND2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(active(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > SND1

Status:
SND1: [1]
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > AFTERNTH1

Status:
AFTERNTH1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > AFTERNTH2

Status:
AFTERNTH2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(80) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(82) TRUE

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > CONS1

Status:
CONS1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > CONS2

Status:
CONS2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(89) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(91) TRUE

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > PAIR1

Status:
PAIR1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(active(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > PAIR2

Status:
PAIR2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(100) TRUE

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > SPLITAT1

Status:
SPLITAT1: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(active(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > SPLITAT2

Status:
SPLITAT2: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(109) TRUE

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2)) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > U12^11

Status:
U12^11: multiset
mark1: multiset

The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
active1 > U12^12

Status:
U12^12: [1,2]
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > U11^14
active1 > U11^14

Status:
U11^14: [4,3,1,2]
mark1: multiset
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(125) TRUE

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3, X4)) → ACTIVE(U11(mark(X1), X2, X3, X4))
ACTIVE(U11(tt, N, X, XS)) → MARK(U12(splitAt(N, XS), X))
MARK(U11(X1, X2, X3, X4)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(U12(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(fst(pair(X, Y))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(and(X1, X2)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(snd(pair(X, Y))) → MARK(Y)
MARK(fst(X)) → MARK(X)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(head(X)) → MARK(X)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U11(tt, N, X, XS))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.