(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, N, X, XS)) → MARK(U12(splitAt(N, XS), X))
ACTIVE(U11(tt, N, X, XS)) → U121(splitAt(N, XS), X)
ACTIVE(U11(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U12(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(U12(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U12(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(fst(pair(X, Y))) → MARK(X)
ACTIVE(head(cons(N, XS))) → MARK(N)
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(snd(pair(X, Y))) → MARK(Y)
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U11(tt, N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U111(tt, N, X, XS)
ACTIVE(tail(cons(N, XS))) → MARK(XS)
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
MARK(U11(X1, X2, X3, X4)) → ACTIVE(U11(mark(X1), X2, X3, X4))
MARK(U11(X1, X2, X3, X4)) → U111(mark(X1), X2, X3, X4)
MARK(U11(X1, X2, X3, X4)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
MARK(U12(X1, X2)) → U121(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(nil) → ACTIVE(nil)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)
U121(mark(X1), X2) → U121(X1, X2)
U121(X1, mark(X2)) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 16 SCCs with 33 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > TAKE2

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(active(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > TAIL1

The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > TAIL1

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SEL2

The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > S1

The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > S1

The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(active(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  NATSFROM(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > NATSFROM1

The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > NATSFROM1

The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(active(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > HEAD1

The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > HEAD1

The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(active(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  FST(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > FST1

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > FST1

The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AND1

The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AND2

The following usable rules [FROCOS05] were oriented: none

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > AND1

The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > AND1

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(active(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  SND(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
active1 > SND1

The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > SND1

The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AFTERNTH2

The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(90) TRUE

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > CONS1

The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > CONS2

The following usable rules [FROCOS05] were oriented: none

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > CONS1

The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > CONS1

The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(101) TRUE

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PAIR2

The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(active(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, active(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(112) TRUE

(113) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SPLITAT2

The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(123) TRUE

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, mark(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, mark(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)
U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U12^12

The following usable rules [FROCOS05] were oriented: none

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(active(X1), X2) → U121(X1, X2)
U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(active(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(X1, active(X2)) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(X1, active(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x2)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U12^11

The following usable rules [FROCOS05] were oriented: none

(132) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(134) TRUE

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, mark(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, mark(X4)) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3, x4)  =  U111(x2, x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > U11^13

The following usable rules [FROCOS05] were oriented: none

(137) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3, x4)  =  U111(x1, x2, x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(139) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(140) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2, X3, X4) → U111(X1, X2, X3, X4)
U111(X1, active(X2), X3, X4) → U111(X1, X2, X3, X4)
U111(X1, X2, active(X3), X4) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3, x4)  =  U111(x1, x2, x3)
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
active1 > U11^13

The following usable rules [FROCOS05] were oriented: none

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, X3, active(X4)) → U111(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3, x4)  =  x4
active(x1)  =  active(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(145) TRUE

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3, X4)) → ACTIVE(U11(mark(X1), X2, X3, X4))
ACTIVE(U11(tt, N, X, XS)) → MARK(U12(splitAt(N, XS), X))
MARK(U11(X1, X2, X3, X4)) → MARK(X1)
MARK(U12(X1, X2)) → ACTIVE(U12(mark(X1), X2))
ACTIVE(U12(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(U12(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(fst(pair(X, Y))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(and(X1, X2)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(snd(pair(X, Y))) → MARK(Y)
MARK(fst(X)) → MARK(X)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(head(X)) → MARK(X)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U11(tt, N, X, XS))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(U11(tt, N, X, XS)) → mark(U12(splitAt(N, XS), X))
active(U12(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(X)
active(head(cons(N, XS))) → mark(N)
active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(snd(pair(X, Y))) → mark(Y)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(U11(tt, N, X, XS))
active(tail(cons(N, XS))) → mark(XS)
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
mark(U11(X1, X2, X3, X4)) → active(U11(mark(X1), X2, X3, X4))
mark(tt) → active(tt)
mark(U12(X1, X2)) → active(U12(mark(X1), X2))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(fst(X)) → active(fst(mark(X)))
mark(head(X)) → active(head(mark(X)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
U11(mark(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, mark(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, mark(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, mark(X4)) → U11(X1, X2, X3, X4)
U11(active(X1), X2, X3, X4) → U11(X1, X2, X3, X4)
U11(X1, active(X2), X3, X4) → U11(X1, X2, X3, X4)
U11(X1, X2, active(X3), X4) → U11(X1, X2, X3, X4)
U11(X1, X2, X3, active(X4)) → U11(X1, X2, X3, X4)
U12(mark(X1), X2) → U12(X1, X2)
U12(X1, mark(X2)) → U12(X1, X2)
U12(active(X1), X2) → U12(X1, X2)
U12(X1, active(X2)) → U12(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
head(mark(X)) → head(X)
head(active(X)) → head(X)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.