(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(U101(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U101(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(U11(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U11(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U21(tt, X)) → MARK(X)
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(U41(tt, N)) → CONS(N, natsFrom(s(N)))
ACTIVE(U41(tt, N)) → NATSFROM(s(N))
ACTIVE(U41(tt, N)) → S(N)
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(U51(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U51(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U61(tt, Y)) → MARK(Y)
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
ACTIVE(U71(tt, XS)) → PAIR(nil, XS)
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
ACTIVE(U81(tt, N, X, XS)) → U821(splitAt(N, XS), X)
ACTIVE(U81(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(U82(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U82(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(U91(tt, XS)) → MARK(XS)
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(afterNth(N, XS)) → U111(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(afterNth(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(afterNth(N, XS)) → ISNATURAL(N)
ACTIVE(afterNth(N, XS)) → ISLNAT(XS)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
ACTIVE(fst(pair(X, Y))) → U211(and(isLNat(X), isLNat(Y)), X)
ACTIVE(fst(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(fst(pair(X, Y))) → ISLNAT(X)
ACTIVE(fst(pair(X, Y))) → ISLNAT(Y)
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
ACTIVE(head(cons(N, XS))) → U311(and(isNatural(N), isLNat(XS)), N)
ACTIVE(head(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(head(cons(N, XS))) → ISNATURAL(N)
ACTIVE(head(cons(N, XS))) → ISLNAT(XS)
ACTIVE(isLNat(nil)) → MARK(tt)
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(afterNth(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(afterNth(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(afterNth(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(cons(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(cons(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(cons(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
ACTIVE(isLNat(fst(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
ACTIVE(isLNat(natsFrom(V1))) → ISNATURAL(V1)
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
ACTIVE(isLNat(snd(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
ACTIVE(isLNat(tail(V1))) → ISLNAT(V1)
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(take(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(take(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(take(V1, V2))) → ISLNAT(V2)
ACTIVE(isNatural(0)) → MARK(tt)
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
ACTIVE(isNatural(head(V1))) → ISLNAT(V1)
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
ACTIVE(isNatural(s(V1))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isNatural(sel(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isNatural(sel(V1, V2))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
ACTIVE(isPLNat(pair(V1, V2))) → AND(isLNat(V1), isLNat(V2))
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V1)
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isPLNat(splitAt(V1, V2))) → ISNATURAL(V1)
ACTIVE(isPLNat(splitAt(V1, V2))) → ISLNAT(V2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(natsFrom(N)) → U411(isNatural(N), N)
ACTIVE(natsFrom(N)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(sel(N, XS)) → U511(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(sel(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(sel(N, XS)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → ISLNAT(XS)
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(snd(pair(X, Y))) → U611(and(isLNat(X), isLNat(Y)), Y)
ACTIVE(snd(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(snd(pair(X, Y))) → ISLNAT(X)
ACTIVE(snd(pair(X, Y))) → ISLNAT(Y)
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(0, XS)) → U711(isLNat(XS), XS)
ACTIVE(splitAt(0, XS)) → ISLNAT(XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U811(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(N), and(isNatural(X), isLNat(XS)))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(N)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(X), isLNat(XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → ISLNAT(XS)
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(tail(cons(N, XS))) → U911(and(isNatural(N), isLNat(XS)), XS)
ACTIVE(tail(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(tail(cons(N, XS))) → ISNATURAL(N)
ACTIVE(tail(cons(N, XS))) → ISLNAT(XS)
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(take(N, XS)) → U1011(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(take(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(take(N, XS)) → ISNATURAL(N)
ACTIVE(take(N, XS)) → ISLNAT(XS)
MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
MARK(U101(X1, X2, X3)) → U1011(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
MARK(U51(X1, X2, X3)) → U511(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
MARK(U61(X1, X2)) → U611(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
MARK(U71(X1, X2)) → U711(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
MARK(U81(X1, X2, X3, X4)) → U811(mark(X1), X2, X3, X4)
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
MARK(U82(X1, X2)) → U821(mark(X1), X2)
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
MARK(U91(X1, X2)) → U911(mark(X1), X2)
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(X1, mark(X2)) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(X1, mark(X2)) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)
U821(mark(X1), X2) → U821(X1, X2)
U821(X1, mark(X2)) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
U911(X1, mark(X2)) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATURAL(mark(X)) → ISNATURAL(X)
ISNATURAL(active(X)) → ISNATURAL(X)
ISLNAT(mark(X)) → ISLNAT(X)
ISLNAT(active(X)) → ISLNAT(X)
ISPLNAT(mark(X)) → ISPLNAT(X)
ISPLNAT(active(X)) → ISPLNAT(X)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 28 SCCs with 105 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SEL1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SEL1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > SEL1

Status:
SEL1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SEL2, mark1]

Status:
SEL2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
TAKE1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
TAKE1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > TAKE1

Status:
TAKE1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[TAKE2, mark1]

Status:
TAKE2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(active(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(active(X)) → ISPLNAT(X)
ISPLNAT(mark(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(active(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(mark(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(mark(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(active(X)) → ISLNAT(X)
ISLNAT(mark(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(active(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(mark(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(mark(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(active(X)) → ISNATURAL(X)
ISNATURAL(mark(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(active(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(mark(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(mark(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AND1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AND1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > AND1

Status:
AND1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[AND2, mark1]

Status:
AND2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(X1, mark(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(X1, active(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U91^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(X1, mark(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(active(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U91^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(X1, mark(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(X1, mark(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U91^11

Status:
U91^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(mark(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U91^12, mark1]

Status:
U91^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(X1, mark(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(X1, active(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U82^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(X1, mark(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(active(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U82^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(X1, mark(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(X1, mark(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U82^11

Status:
U82^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U82^12, mark1]

Status:
U82^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(87) TRUE

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U81^12, mark1, active1]

Status:
U81^12: [2,1]
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, active(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PAIR1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(active(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PAIR1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > PAIR1

Status:
PAIR1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[PAIR2, mark1]

Status:
PAIR2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(107) TRUE

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, active(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U71^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(active(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U71^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, mark(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U71^11

Status:
U71^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U71^12, mark1]

Status:
U71^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U61^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U61^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U61^11

Status:
U61^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U61^12, mark1]

Status:
U61^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(129) TRUE

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AFTERNTH1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(133) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AFTERNTH1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(135) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > AFTERNTH1

Status:
AFTERNTH1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(137) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[AFTERNTH2, mark1]

Status:
AFTERNTH2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(138) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(140) TRUE

(141) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(142) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(active(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(145) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(147) TRUE

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(149) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U51^12
active1 > U51^12

Status:
U51^12: multiset
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(154) TRUE

(155) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(156) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(159) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(161) TRUE

(162) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(163) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(active(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(164) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(165) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(166) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(168) TRUE

(169) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(170) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(171) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(172) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > CONS1

Status:
CONS1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[CONS2, mark1]

Status:
CONS2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(177) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(179) TRUE

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, active(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U41^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U41^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(184) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U41^11

Status:
U41^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(186) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(187) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U41^12, mark1]

Status:
U41^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(188) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(190) TRUE

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U31^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U31^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(195) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U31^11

Status:
U31^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(197) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(198) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U31^12, mark1]

Status:
U31^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(199) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(200) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(201) TRUE

(202) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U21^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(204) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U21^11: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(206) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(207) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U21^11

Status:
U21^11: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(208) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(209) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[U21^12, mark1]

Status:
U21^12: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(210) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(211) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(212) TRUE

(213) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(214) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(active(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(217) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(218) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(219) TRUE

(220) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(221) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(222) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(223) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U11^12
active1 > U11^12

Status:
U11^12: multiset
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(224) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(225) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(226) TRUE

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(228) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SPLITAT1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(229) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(230) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SPLITAT1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(231) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(232) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > SPLITAT1

Status:
SPLITAT1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(233) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(234) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SPLITAT2, mark1]

Status:
SPLITAT2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(235) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(236) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(237) TRUE

(238) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(239) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(active(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(240) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(241) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(242) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(243) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(244) TRUE

(245) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(246) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(247) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(248) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > U101^12
active1 > U101^12

Status:
U101^12: multiset
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(249) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(250) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(251) TRUE

(252) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(U21(tt, X)) → MARK(X)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, Y)) → MARK(Y)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
MARK(U41(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U91(tt, XS)) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(253) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U101(x1, x2, x3)  =  U101
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
fst(x1)  =  fst
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
snd(x1)  =  snd
U21(x1, x2)  =  U21
U31(x1, x2)  =  U31
U41(x1, x2)  =  U41
cons(x1, x2)  =  cons
natsFrom(x1)  =  natsFrom
s(x1)  =  s
U51(x1, x2, x3)  =  U51
head(x1)  =  head
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61
U71(x1, x2)  =  U71
pair(x1, x2)  =  pair
nil  =  nil
U81(x1, x2, x3, x4)  =  U81
U82(x1, x2)  =  U82
U91(x1, x2)  =  U91
and(x1, x2)  =  and
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail
take(x1, x2)  =  take
sel(x1, x2)  =  sel
0  =  0
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
tt > [MARK, U101, fst, splitAt, U11, snd, U21, U31, U41, natsFrom, s, U51, head, afterNth, U61, U71, pair, nil, U81, U82, U91, and, isNatural, isLNat, isPLNat, tail, take, sel] > cons > [mark, active1]
0 > [mark, active1]

Status:
MARK: multiset
U101: multiset
mark: multiset
tt: multiset
fst: multiset
splitAt: multiset
U11: multiset
snd: multiset
U21: multiset
U31: multiset
U41: multiset
cons: multiset
natsFrom: multiset
s: multiset
U51: multiset
head: multiset
afterNth: multiset
U61: multiset
U71: multiset
pair: multiset
nil: multiset
U81: multiset
U82: multiset
U91: multiset
and: multiset
isNatural: multiset
isLNat: multiset
isPLNat: multiset
tail: multiset
take: multiset
sel: multiset
0: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented:

U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
fst(active(X)) → fst(X)
fst(mark(X)) → fst(X)
snd(active(X)) → snd(X)
snd(mark(X)) → snd(X)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
natsFrom(active(X)) → natsFrom(X)
natsFrom(mark(X)) → natsFrom(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
head(active(X)) → head(X)
head(mark(X)) → head(X)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(mark(X1), X2) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatural(active(X)) → isNatural(X)
isNatural(mark(X)) → isNatural(X)
isLNat(active(X)) → isLNat(X)
isLNat(mark(X)) → isLNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
isPLNat(active(X)) → isPLNat(X)
isPLNat(mark(X)) → isPLNat(X)
U91(X1, mark(X2)) → U91(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

(254) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(U21(tt, X)) → MARK(X)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, Y)) → MARK(Y)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
MARK(U41(X1, X2)) → MARK(X1)
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U91(tt, XS)) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(255) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U101(x1, x2, x3)  =  U101
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
fst(x1)  =  fst
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
snd(x1)  =  snd
U21(x1, x2)  =  U21
U31(x1, x2)  =  U31
U41(x1, x2)  =  U41
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom
s(x1)  =  s
U51(x1, x2, x3)  =  U51
head(x1)  =  head
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61
U71(x1, x2)  =  U71
pair(x1, x2)  =  pair
nil  =  nil
U81(x1, x2, x3, x4)  =  U81
U82(x1, x2)  =  U82
U91(x1, x2)  =  U91
and(x1, x2)  =  and
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail
take(x1, x2)  =  take
sel(x1, x2)  =  sel
0  =  0
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, U101, fst, splitAt, U11, snd, U21, U31, U41, natsFrom, U51, head, afterNth, U61, U71, U81, U82, U91, and, isNatural, isLNat, isPLNat, tail, take, sel] > [tt, cons2, 0] > s > [mark, nil, active1]
[MARK, U101, fst, splitAt, U11, snd, U21, U31, U41, natsFrom, U51, head, afterNth, U61, U71, U81, U82, U91, and, isNatural, isLNat, isPLNat, tail, take, sel] > [tt, cons2, 0] > pair > [mark, nil, active1]

Status:
MARK: multiset
U101: multiset
mark: multiset
tt: multiset
fst: multiset
splitAt: multiset
U11: multiset
snd: multiset
U21: multiset
U31: multiset
U41: multiset
cons2: multiset
natsFrom: multiset
s: multiset
U51: multiset
head: multiset
afterNth: multiset
U61: multiset
U71: multiset
pair: multiset
nil: multiset
U81: multiset
U82: multiset
U91: multiset
and: multiset
isNatural: multiset
isLNat: multiset
isPLNat: multiset
tail: multiset
take: multiset
sel: multiset
0: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented:

U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
fst(active(X)) → fst(X)
fst(mark(X)) → fst(X)
snd(active(X)) → snd(X)
snd(mark(X)) → snd(X)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
natsFrom(active(X)) → natsFrom(X)
natsFrom(mark(X)) → natsFrom(X)
U21(X1, mark(X2)) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
head(active(X)) → head(X)
head(mark(X)) → head(X)
U31(X1, mark(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(mark(X1), X2) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
isNatural(active(X)) → isNatural(X)
isNatural(mark(X)) → isNatural(X)
isLNat(active(X)) → isLNat(X)
isLNat(mark(X)) → isLNat(X)
and(X1, mark(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
isPLNat(active(X)) → isPLNat(X)
isPLNat(mark(X)) → isPLNat(X)
U91(X1, mark(X2)) → U91(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

(256) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(U21(tt, X)) → MARK(X)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, Y)) → MARK(Y)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
MARK(U41(X1, X2)) → MARK(X1)
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(U91(tt, XS)) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(U71(X1, X2)) → MARK(X1)
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.