(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(U101(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U101(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(U11(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U11(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U21(tt, X)) → MARK(X)
ACTIVE(U31(tt, N)) → MARK(N)
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(U41(tt, N)) → CONS(N, natsFrom(s(N)))
ACTIVE(U41(tt, N)) → NATSFROM(s(N))
ACTIVE(U41(tt, N)) → S(N)
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(U51(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U51(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U61(tt, Y)) → MARK(Y)
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
ACTIVE(U71(tt, XS)) → PAIR(nil, XS)
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
ACTIVE(U81(tt, N, X, XS)) → U821(splitAt(N, XS), X)
ACTIVE(U81(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(U82(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U82(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(U91(tt, XS)) → MARK(XS)
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(afterNth(N, XS)) → U111(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(afterNth(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(afterNth(N, XS)) → ISNATURAL(N)
ACTIVE(afterNth(N, XS)) → ISLNAT(XS)
ACTIVE(and(tt, X)) → MARK(X)
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
ACTIVE(fst(pair(X, Y))) → U211(and(isLNat(X), isLNat(Y)), X)
ACTIVE(fst(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(fst(pair(X, Y))) → ISLNAT(X)
ACTIVE(fst(pair(X, Y))) → ISLNAT(Y)
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
ACTIVE(head(cons(N, XS))) → U311(and(isNatural(N), isLNat(XS)), N)
ACTIVE(head(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(head(cons(N, XS))) → ISNATURAL(N)
ACTIVE(head(cons(N, XS))) → ISLNAT(XS)
ACTIVE(isLNat(nil)) → MARK(tt)
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(afterNth(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(afterNth(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(afterNth(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(cons(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(cons(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(cons(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
ACTIVE(isLNat(fst(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
ACTIVE(isLNat(natsFrom(V1))) → ISNATURAL(V1)
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
ACTIVE(isLNat(snd(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
ACTIVE(isLNat(tail(V1))) → ISLNAT(V1)
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isLNat(take(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(take(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(take(V1, V2))) → ISLNAT(V2)
ACTIVE(isNatural(0)) → MARK(tt)
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
ACTIVE(isNatural(head(V1))) → ISLNAT(V1)
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
ACTIVE(isNatural(s(V1))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isNatural(sel(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isNatural(sel(V1, V2))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
ACTIVE(isPLNat(pair(V1, V2))) → AND(isLNat(V1), isLNat(V2))
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V1)
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isPLNat(splitAt(V1, V2))) → ISNATURAL(V1)
ACTIVE(isPLNat(splitAt(V1, V2))) → ISLNAT(V2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(natsFrom(N)) → U411(isNatural(N), N)
ACTIVE(natsFrom(N)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(sel(N, XS)) → U511(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(sel(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(sel(N, XS)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → ISLNAT(XS)
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(snd(pair(X, Y))) → U611(and(isLNat(X), isLNat(Y)), Y)
ACTIVE(snd(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(snd(pair(X, Y))) → ISLNAT(X)
ACTIVE(snd(pair(X, Y))) → ISLNAT(Y)
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(0, XS)) → U711(isLNat(XS), XS)
ACTIVE(splitAt(0, XS)) → ISLNAT(XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U811(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(N), and(isNatural(X), isLNat(XS)))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(N)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(X), isLNat(XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → ISLNAT(XS)
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(tail(cons(N, XS))) → U911(and(isNatural(N), isLNat(XS)), XS)
ACTIVE(tail(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(tail(cons(N, XS))) → ISNATURAL(N)
ACTIVE(tail(cons(N, XS))) → ISLNAT(XS)
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(take(N, XS)) → U1011(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(take(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(take(N, XS)) → ISNATURAL(N)
ACTIVE(take(N, XS)) → ISLNAT(XS)
MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
MARK(U101(X1, X2, X3)) → U1011(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(tt) → ACTIVE(tt)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
MARK(U11(X1, X2, X3)) → U111(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
MARK(U21(X1, X2)) → U211(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
MARK(U31(X1, X2)) → U311(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
MARK(U41(X1, X2)) → U411(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
MARK(U51(X1, X2, X3)) → U511(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
MARK(U61(X1, X2)) → U611(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
MARK(U71(X1, X2)) → U711(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
MARK(U81(X1, X2, X3, X4)) → U811(mark(X1), X2, X3, X4)
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
MARK(U82(X1, X2)) → U821(mark(X1), X2)
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
MARK(U91(X1, X2)) → U911(mark(X1), X2)
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
MARK(and(X1, X2)) → AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
U211(mark(X1), X2) → U211(X1, X2)
U211(X1, mark(X2)) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(X1, mark(X2)) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(X1, mark(X2)) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(X1, mark(X2)) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(X1, mark(X2)) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)
U821(mark(X1), X2) → U821(X1, X2)
U821(X1, mark(X2)) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
U911(X1, mark(X2)) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(X1, mark(X2)) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)
ISNATURAL(mark(X)) → ISNATURAL(X)
ISNATURAL(active(X)) → ISNATURAL(X)
ISLNAT(mark(X)) → ISLNAT(X)
ISLNAT(active(X)) → ISLNAT(X)
ISPLNAT(mark(X)) → ISPLNAT(X)
ISPLNAT(active(X)) → ISPLNAT(X)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 28 SCCs with 105 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
SEL1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[SEL2, mark1]

Status:
mark1: [1]
SEL2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[SEL2, active1]

Status:
active1: [1]
SEL2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
TAKE1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[TAKE2, mark1]

Status:
TAKE2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[TAKE2, active1]

Status:
active1: [1]
TAKE2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(active(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(active(X)) → ISPLNAT(X)
ISPLNAT(mark(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(active(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(mark(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(mark(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(40) TRUE

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(active(X)) → ISLNAT(X)
ISLNAT(mark(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(active(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(mark(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(mark(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(47) TRUE

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(active(X)) → ISNATURAL(X)
ISNATURAL(mark(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(active(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(mark(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(mark(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(X1, mark(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, mark(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
AND1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)
AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AND2, mark1]

Status:
AND2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)
AND(X1, active(X2)) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(X1, active(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(active(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(active(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[AND2, active1]

Status:
active1: [1]
AND2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(X1, mark(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(X1, mark(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U91^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(mark(X1), X2) → U911(X1, X2)
U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(mark(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U91^12, mark1]

Status:
U91^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(active(X1), X2) → U911(X1, X2)
U911(X1, active(X2)) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(X1, active(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(active(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(active(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U91^12, active1]

Status:
active1: [1]
U91^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(X1, mark(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(X1, mark(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
U82^11: [1]


The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2) → U821(X1, X2)
U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U82^12, mark1]

Status:
mark1: [1]
U82^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(active(X1), X2) → U821(X1, X2)
U821(X1, active(X2)) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(X1, active(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(active(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(active(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U82^12, active1]

Status:
active1: [1]
U82^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(87) TRUE

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, X2, mark(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, mark(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U81^12, mark1]

Status:
U81^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, X2, active(X3), X4) → U811(X1, X2, X3, X4)
U811(X1, X2, X3, active(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x3, x4)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
mark > [U81^12, active1]

Status:
active1: [1]
U81^12: [2,1]
mark: []


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, mark(X2), X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U81^12, mark1]

Status:
U81^12: [1,2]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(X1, active(X2), X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x2, x4)
mark(x1)  =  mark
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U81^12, mark, active1]

Status:
active1: [1]
U81^12: [1,2]
mark: []


The following usable rules [FROCOS05] were oriented: none

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(active(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x1, x2, x4)
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U81^13, active1]

Status:
active1: [1]
U81^13: [3,1,2]


The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(102) TRUE

(103) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(104) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
PAIR1: [1]


The following usable rules [FROCOS05] were oriented: none

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[PAIR2, mark1]

Status:
PAIR2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, active(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(active(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[PAIR2, active1]

Status:
active1: [1]
PAIR2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(111) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(113) TRUE

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(X1, mark(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, mark(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U71^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)
U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U71^12, mark1]

Status:
U71^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(active(X1), X2) → U711(X1, X2)
U711(X1, active(X2)) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(X1, active(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(active(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(121) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(active(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U71^12, active1]

Status:
active1: [1]
U71^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(122) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(124) TRUE

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(X1, mark(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, mark(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U61^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(127) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)
U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(128) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U61^12, mark1]

Status:
U61^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(129) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X1), X2) → U611(X1, X2)
U611(X1, active(X2)) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(130) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(X1, active(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(131) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(active(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(132) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(active(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U61^12, active1]

Status:
active1: [1]
U61^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(133) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(135) TRUE

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(137) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
AFTERNTH1: [1]


The following usable rules [FROCOS05] were oriented: none

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AFTERNTH2, mark1]

Status:
mark1: [1]
AFTERNTH2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[AFTERNTH2, active1]

Status:
active1: [1]
AFTERNTH2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(144) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(145) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(146) TRUE

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(active(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(151) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(153) TRUE

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, X2, mark(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
U51^11: [1]


The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(X1, mark(X2), X3) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U51^13, mark1]

Status:
U51^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(158) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(active(X1), X2, X3) → U511(X1, X2, X3)
U511(X1, active(X2), X3) → U511(X1, X2, X3)
U511(X1, X2, active(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > U51^13

Status:
U51^13: [3,2,1]
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(160) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(161) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(162) TRUE

(163) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(165) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(167) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(168) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(169) TRUE

(170) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(active(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(172) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(173) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(174) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(175) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(176) TRUE

(177) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
CONS1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(179) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(180) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[CONS2, mark1]

Status:
CONS2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(181) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(182) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(183) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(184) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[CONS2, active1]

Status:
active1: [1]
CONS2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(185) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(186) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(187) TRUE

(188) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(X1, mark(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, mark(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U41^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(190) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)
U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(191) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U41^12, mark1]

Status:
U41^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(192) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2) → U411(X1, X2)
U411(X1, active(X2)) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(193) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(X1, active(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(194) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(active(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(195) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(active(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U41^12, active1]

Status:
active1: [1]
U41^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(196) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(197) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(198) TRUE

(199) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(X1, mark(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(200) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, mark(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U31^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(201) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)
U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(202) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U31^12, mark1]

Status:
U31^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(203) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)
U311(X1, active(X2)) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(204) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(X1, active(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(205) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(active(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(206) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(active(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U31^12, active1]

Status:
active1: [1]
U31^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(207) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(208) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(209) TRUE

(210) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(X1, mark(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(211) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, mark(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]
U21^11: [1]


The following usable rules [FROCOS05] were oriented: none

(212) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)
U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(213) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U21^12, mark1]

Status:
U21^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(214) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)
U211(X1, active(X2)) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(215) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(X1, active(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(216) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(active(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(217) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(active(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U21^12, active1]

Status:
active1: [1]
U21^12: [2,1]


The following usable rules [FROCOS05] were oriented: none

(218) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(219) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(220) TRUE

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(222) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(active(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(223) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(224) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(225) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(226) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(227) TRUE

(228) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(229) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, X2, mark(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U11^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(230) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(231) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(X1, mark(X2), X3) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11^13, mark1]

Status:
U11^13: [3,2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(232) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(233) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(active(X1), X2, X3) → U111(X1, X2, X3)
U111(X1, active(X2), X3) → U111(X1, X2, X3)
U111(X1, X2, active(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > U11^13

Status:
active1: [1]
U11^13: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(234) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(235) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(236) TRUE

(237) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(238) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
SPLITAT1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(239) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(240) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[SPLITAT2, mark1]

Status:
SPLITAT2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(241) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(242) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x2
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(243) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(active(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(244) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[SPLITAT2, active1]

Status:
active1: [1]
SPLITAT2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(245) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(246) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(247) TRUE

(248) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(249) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(active(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
active1: [1]


The following usable rules [FROCOS05] were oriented: none

(250) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(251) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(252) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(253) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(254) TRUE

(255) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(256) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(X1, X2, mark(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U101^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(257) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(258) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(X1, mark(X2), X3) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x1, x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U101^13, mark1]

Status:
mark1: [1]
U101^13: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(259) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(260) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(active(X1), X2, X3) → U1011(X1, X2, X3)
U1011(X1, active(X2), X3) → U1011(X1, X2, X3)
U1011(X1, X2, active(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > U101^13

Status:
active1: [1]
U101^13: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(261) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(262) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(263) TRUE

(264) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(U21(tt, X)) → MARK(X)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, Y)) → MARK(Y)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
MARK(U41(X1, X2)) → MARK(X1)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(natsFrom(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(U91(tt, XS)) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(265) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
U101(x1, x2, x3)  =  U101
ACTIVE(x1)  =  x1
mark(x1)  =  mark
tt  =  tt
fst(x1)  =  fst
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
snd(x1)  =  snd
U21(x1, x2)  =  U21
U31(x1, x2)  =  U31
U41(x1, x2)  =  U41
cons(x1, x2)  =  cons
natsFrom(x1)  =  natsFrom
s(x1)  =  s
U51(x1, x2, x3)  =  U51
head(x1)  =  head
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61
U71(x1, x2)  =  U71
pair(x1, x2)  =  pair
nil  =  nil
U81(x1, x2, x3, x4)  =  U81
U82(x1, x2)  =  U82
U91(x1, x2)  =  U91
and(x1, x2)  =  and
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail
take(x1, x2)  =  take
sel(x1, x2)  =  sel
0  =  0
active(x1)  =  active(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK, U101, mark, fst, splitAt, U11, snd, U21, U31, U41, natsFrom, U51, head, afterNth, U61, U71, nil, U81, U82, U91, and, isNatural, isLNat, isPLNat, tail, take, sel] > cons > active1 > pair > [tt, s]
[MARK, U101, mark, fst, splitAt, U11, snd, U21, U31, U41, natsFrom, U51, head, afterNth, U61, U71, nil, U81, U82, U91, and, isNatural, isLNat, isPLNat, tail, take, sel] > 0 > active1 > pair > [tt, s]

Status:
isNatural: []
U31: []
U11: []
natsFrom: []
afterNth: []
active1: [1]
U61: []
tt: []
cons: []
U82: []
head: []
U41: []
and: []
U81: []
nil: []
MARK: []
U21: []
U51: []
isPLNat: []
sel: []
U91: []
fst: []
isLNat: []
s: []
U71: []
0: []
take: []
splitAt: []
snd: []
tail: []
mark: []
U101: []
pair: []


The following usable rules [FROCOS05] were oriented:

sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
isLNat(active(X)) → isLNat(X)
isLNat(mark(X)) → isLNat(X)
isPLNat(active(X)) → isPLNat(X)
isPLNat(mark(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
isNatural(active(X)) → isNatural(X)
isNatural(mark(X)) → isNatural(X)
natsFrom(active(X)) → natsFrom(X)
natsFrom(mark(X)) → natsFrom(X)
cons(X1, active(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
s(active(X)) → s(X)
s(mark(X)) → s(X)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
head(active(X)) → head(X)
head(mark(X)) → head(X)
pair(X1, active(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
snd(active(X)) → snd(X)
snd(mark(X)) → snd(X)
U21(active(X1), X2) → U21(X1, X2)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)

(266) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U101(X1, X2, X3)) → ACTIVE(U101(mark(X1), X2, X3))
ACTIVE(U101(tt, N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(U11(tt, N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(fst(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(U21(tt, X)) → MARK(X)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → ACTIVE(U11(mark(X1), X2, X3))
ACTIVE(U31(tt, N)) → MARK(N)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(U41(tt, N)) → MARK(cons(N, natsFrom(s(N))))
MARK(snd(X)) → MARK(X)
MARK(U21(X1, X2)) → ACTIVE(U21(mark(X1), X2))
ACTIVE(U51(tt, N, XS)) → MARK(head(afterNth(N, XS)))
MARK(U21(X1, X2)) → MARK(X1)
MARK(U31(X1, X2)) → ACTIVE(U31(mark(X1), X2))
ACTIVE(U61(tt, Y)) → MARK(Y)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → ACTIVE(U41(mark(X1), X2))
ACTIVE(U71(tt, XS)) → MARK(pair(nil, XS))
MARK(U41(X1, X2)) → MARK(X1)
ACTIVE(U81(tt, N, X, XS)) → MARK(U82(splitAt(N, XS), X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(U82(pair(YS, ZS), X)) → MARK(pair(cons(X, YS), ZS))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(U91(tt, XS)) → MARK(XS)
MARK(s(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → ACTIVE(U51(mark(X1), X2, X3))
ACTIVE(afterNth(N, XS)) → MARK(U11(and(isNatural(N), isLNat(XS)), N, XS))
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(and(tt, X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
ACTIVE(fst(pair(X, Y))) → MARK(U21(and(isLNat(X), isLNat(Y)), X))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(U61(X1, X2)) → ACTIVE(U61(mark(X1), X2))
ACTIVE(head(cons(N, XS))) → MARK(U31(and(isNatural(N), isLNat(XS)), N))
MARK(U61(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → ACTIVE(U71(mark(X1), X2))
ACTIVE(isLNat(afterNth(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(U71(X1, X2)) → MARK(X1)
ACTIVE(isLNat(cons(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(U81(X1, X2, X3, X4)) → ACTIVE(U81(mark(X1), X2, X3, X4))
ACTIVE(isLNat(fst(V1))) → MARK(isPLNat(V1))
MARK(U81(X1, X2, X3, X4)) → MARK(X1)
MARK(U82(X1, X2)) → ACTIVE(U82(mark(X1), X2))
ACTIVE(isLNat(natsFrom(V1))) → MARK(isNatural(V1))
MARK(U82(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → ACTIVE(U91(mark(X1), X2))
ACTIVE(isLNat(snd(V1))) → MARK(isPLNat(V1))
MARK(U91(X1, X2)) → MARK(X1)
MARK(and(X1, X2)) → ACTIVE(and(mark(X1), X2))
ACTIVE(isLNat(tail(V1))) → MARK(isLNat(V1))
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatural(X)) → ACTIVE(isNatural(X))
ACTIVE(isLNat(take(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(isLNat(X)) → ACTIVE(isLNat(X))
ACTIVE(isNatural(head(V1))) → MARK(isLNat(V1))
MARK(isPLNat(X)) → ACTIVE(isPLNat(X))
ACTIVE(isNatural(s(V1))) → MARK(isNatural(V1))
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(isNatural(sel(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(tail(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(isPLNat(pair(V1, V2))) → MARK(and(isLNat(V1), isLNat(V2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(isPLNat(splitAt(V1, V2))) → MARK(and(isNatural(V1), isLNat(V2)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
ACTIVE(natsFrom(N)) → MARK(U41(isNatural(N), N))
ACTIVE(sel(N, XS)) → MARK(U51(and(isNatural(N), isLNat(XS)), N, XS))
ACTIVE(snd(pair(X, Y))) → MARK(U61(and(isLNat(X), isLNat(Y)), Y))
ACTIVE(splitAt(0, XS)) → MARK(U71(isLNat(XS), XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
ACTIVE(tail(cons(N, XS))) → MARK(U91(and(isNatural(N), isLNat(XS)), XS))
ACTIVE(take(N, XS)) → MARK(U101(and(isNatural(N), isLNat(XS)), N, XS))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
mark(U101(X1, X2, X3)) → active(U101(mark(X1), X2, X3))
mark(tt) → active(tt)
mark(fst(X)) → active(fst(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(U11(X1, X2, X3)) → active(U11(mark(X1), X2, X3))
mark(snd(X)) → active(snd(mark(X)))
mark(U21(X1, X2)) → active(U21(mark(X1), X2))
mark(U31(X1, X2)) → active(U31(mark(X1), X2))
mark(U41(X1, X2)) → active(U41(mark(X1), X2))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(s(X)) → active(s(mark(X)))
mark(U51(X1, X2, X3)) → active(U51(mark(X1), X2, X3))
mark(head(X)) → active(head(mark(X)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(U61(X1, X2)) → active(U61(mark(X1), X2))
mark(U71(X1, X2)) → active(U71(mark(X1), X2))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(U81(X1, X2, X3, X4)) → active(U81(mark(X1), X2, X3, X4))
mark(U82(X1, X2)) → active(U82(mark(X1), X2))
mark(U91(X1, X2)) → active(U91(mark(X1), X2))
mark(and(X1, X2)) → active(and(mark(X1), X2))
mark(isNatural(X)) → active(isNatural(X))
mark(isLNat(X)) → active(isLNat(X))
mark(isPLNat(X)) → active(isPLNat(X))
mark(tail(X)) → active(tail(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(0) → active(0)
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
U101(mark(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, mark(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, mark(X3)) → U101(X1, X2, X3)
U101(active(X1), X2, X3) → U101(X1, X2, X3)
U101(X1, active(X2), X3) → U101(X1, X2, X3)
U101(X1, X2, active(X3)) → U101(X1, X2, X3)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
U11(mark(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, mark(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, mark(X3)) → U11(X1, X2, X3)
U11(active(X1), X2, X3) → U11(X1, X2, X3)
U11(X1, active(X2), X3) → U11(X1, X2, X3)
U11(X1, X2, active(X3)) → U11(X1, X2, X3)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
U21(mark(X1), X2) → U21(X1, X2)
U21(X1, mark(X2)) → U21(X1, X2)
U21(active(X1), X2) → U21(X1, X2)
U21(X1, active(X2)) → U21(X1, X2)
U31(mark(X1), X2) → U31(X1, X2)
U31(X1, mark(X2)) → U31(X1, X2)
U31(active(X1), X2) → U31(X1, X2)
U31(X1, active(X2)) → U31(X1, X2)
U41(mark(X1), X2) → U41(X1, X2)
U41(X1, mark(X2)) → U41(X1, X2)
U41(active(X1), X2) → U41(X1, X2)
U41(X1, active(X2)) → U41(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
U51(mark(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, mark(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, mark(X3)) → U51(X1, X2, X3)
U51(active(X1), X2, X3) → U51(X1, X2, X3)
U51(X1, active(X2), X3) → U51(X1, X2, X3)
U51(X1, X2, active(X3)) → U51(X1, X2, X3)
head(mark(X)) → head(X)
head(active(X)) → head(X)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
U61(mark(X1), X2) → U61(X1, X2)
U61(X1, mark(X2)) → U61(X1, X2)
U61(active(X1), X2) → U61(X1, X2)
U61(X1, active(X2)) → U61(X1, X2)
U71(mark(X1), X2) → U71(X1, X2)
U71(X1, mark(X2)) → U71(X1, X2)
U71(active(X1), X2) → U71(X1, X2)
U71(X1, active(X2)) → U71(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
U81(mark(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, mark(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, mark(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, mark(X4)) → U81(X1, X2, X3, X4)
U81(active(X1), X2, X3, X4) → U81(X1, X2, X3, X4)
U81(X1, active(X2), X3, X4) → U81(X1, X2, X3, X4)
U81(X1, X2, active(X3), X4) → U81(X1, X2, X3, X4)
U81(X1, X2, X3, active(X4)) → U81(X1, X2, X3, X4)
U82(mark(X1), X2) → U82(X1, X2)
U82(X1, mark(X2)) → U82(X1, X2)
U82(active(X1), X2) → U82(X1, X2)
U82(X1, active(X2)) → U82(X1, X2)
U91(mark(X1), X2) → U91(X1, X2)
U91(X1, mark(X2)) → U91(X1, X2)
U91(active(X1), X2) → U91(X1, X2)
U91(X1, active(X2)) → U91(X1, X2)
and(mark(X1), X2) → and(X1, X2)
and(X1, mark(X2)) → and(X1, X2)
and(active(X1), X2) → and(X1, X2)
and(X1, active(X2)) → and(X1, X2)
isNatural(mark(X)) → isNatural(X)
isNatural(active(X)) → isNatural(X)
isLNat(mark(X)) → isLNat(X)
isLNat(active(X)) → isLNat(X)
isPLNat(mark(X)) → isPLNat(X)
isPLNat(active(X)) → isPLNat(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.