(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U101(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U11(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U11(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U41(tt, N)) → CONS(N, natsFrom(s(N)))
ACTIVE(U41(tt, N)) → NATSFROM(s(N))
ACTIVE(U41(tt, N)) → S(N)
ACTIVE(U51(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U51(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U71(tt, XS)) → PAIR(nil, XS)
ACTIVE(U81(tt, N, X, XS)) → U821(splitAt(N, XS), X)
ACTIVE(U81(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U82(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U82(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(afterNth(N, XS)) → U111(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(afterNth(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(afterNth(N, XS)) → ISNATURAL(N)
ACTIVE(afterNth(N, XS)) → ISLNAT(XS)
ACTIVE(fst(pair(X, Y))) → U211(and(isLNat(X), isLNat(Y)), X)
ACTIVE(fst(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(fst(pair(X, Y))) → ISLNAT(X)
ACTIVE(fst(pair(X, Y))) → ISLNAT(Y)
ACTIVE(head(cons(N, XS))) → U311(and(isNatural(N), isLNat(XS)), N)
ACTIVE(head(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(head(cons(N, XS))) → ISNATURAL(N)
ACTIVE(head(cons(N, XS))) → ISLNAT(XS)
ACTIVE(isLNat(afterNth(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(afterNth(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(afterNth(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(cons(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(cons(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(cons(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(fst(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(natsFrom(V1))) → ISNATURAL(V1)
ACTIVE(isLNat(snd(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(tail(V1))) → ISLNAT(V1)
ACTIVE(isLNat(take(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(take(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(take(V1, V2))) → ISLNAT(V2)
ACTIVE(isNatural(head(V1))) → ISLNAT(V1)
ACTIVE(isNatural(s(V1))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isNatural(sel(V1, V2))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(pair(V1, V2))) → AND(isLNat(V1), isLNat(V2))
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V1)
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(splitAt(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isPLNat(splitAt(V1, V2))) → ISNATURAL(V1)
ACTIVE(isPLNat(splitAt(V1, V2))) → ISLNAT(V2)
ACTIVE(natsFrom(N)) → U411(isNatural(N), N)
ACTIVE(natsFrom(N)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → U511(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(sel(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(sel(N, XS)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → ISLNAT(XS)
ACTIVE(snd(pair(X, Y))) → U611(and(isLNat(X), isLNat(Y)), Y)
ACTIVE(snd(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(snd(pair(X, Y))) → ISLNAT(X)
ACTIVE(snd(pair(X, Y))) → ISLNAT(Y)
ACTIVE(splitAt(0, XS)) → U711(isLNat(XS), XS)
ACTIVE(splitAt(0, XS)) → ISLNAT(XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U811(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(N), and(isNatural(X), isLNat(XS)))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(N)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(X), isLNat(XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → ISLNAT(XS)
ACTIVE(tail(cons(N, XS))) → U911(and(isNatural(N), isLNat(XS)), XS)
ACTIVE(tail(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(tail(cons(N, XS))) → ISNATURAL(N)
ACTIVE(tail(cons(N, XS))) → ISLNAT(XS)
ACTIVE(take(N, XS)) → U1011(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(take(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(take(N, XS)) → ISNATURAL(N)
ACTIVE(take(N, XS)) → ISLNAT(XS)
ACTIVE(U101(X1, X2, X3)) → U1011(active(X1), X2, X3)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → SND(active(X))
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → U811(active(X1), X2, X3, X4)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → U821(active(X1), X2)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → U911(active(X1), X2)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
FST(mark(X)) → FST(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
SND(mark(X)) → SND(X)
U211(mark(X1), X2) → U211(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
NATSFROM(mark(X)) → NATSFROM(X)
S(mark(X)) → S(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U821(mark(X1), X2) → U821(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(U101(X1, X2, X3)) → U1011(proper(X1), proper(X2), proper(X3))
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → FST(proper(X))
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → SND(proper(X))
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → U811(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → U821(proper(X1), proper(X2))
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → U911(proper(X1), proper(X2))
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → ISNATURAL(proper(X))
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → ISLNAT(proper(X))
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → ISPLNAT(proper(X))
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
FST(ok(X)) → FST(X)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
SND(ok(X)) → SND(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U411(ok(X1), ok(X2)) → U411(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
NATSFROM(ok(X)) → NATSFROM(X)
S(ok(X)) → S(X)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
HEAD(ok(X)) → HEAD(X)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U821(ok(X1), ok(X2)) → U821(X1, X2)
U911(ok(X1), ok(X2)) → U911(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATURAL(ok(X)) → ISNATURAL(X)
ISLNAT(ok(X)) → ISLNAT(X)
ISPLNAT(ok(X)) → ISPLNAT(X)
TAIL(ok(X)) → TAIL(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 30 SCCs with 134 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(ok(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(ok(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(ok(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(ok(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(ok(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(ok(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  x1
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [SEL1, mark1]

Status:
SEL1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SEL2, mark1]

Status:
SEL2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [TAKE1, mark1]

Status:
TAKE1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[TAKE2, mark1]

Status:
TAKE2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > AND1

Status:
AND1: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(49) TRUE

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(ok(X1), ok(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(ok(X1), ok(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U91^11

Status:
U91^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(ok(X1), ok(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(ok(X1), ok(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U82^11

Status:
U82^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U81^11
mark1 > U81^11

Status:
U81^11: [1]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x1, x3, x4)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U81^13: [3,2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [PAIR1, mark1]

Status:
PAIR1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[PAIR2, mark1]

Status:
PAIR2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(73) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(75) TRUE

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U71^11

Status:
U71^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(78) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(80) TRUE

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U61^11

Status:
U61^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(85) TRUE

(86) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(88) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(89) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [AFTERNTH1, mark1]

Status:
AFTERNTH1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[AFTERNTH2, mark1]

Status:
AFTERNTH2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(94) TRUE

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(101) TRUE

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U51^12
mark1 > U51^12

Status:
U51^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U51^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(108) TRUE

(109) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(111) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(112) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(113) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(114) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(115) TRUE

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(ok(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(119) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(120) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(121) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(122) TRUE

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > CONS1

Status:
CONS1: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(125) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(126) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(127) TRUE

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U41^11

Status:
U41^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(130) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(132) TRUE

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U31^11

Status:
U31^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(137) TRUE

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(139) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U21^11

Status:
U21^11: multiset
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(140) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(142) TRUE

(143) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(ok(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(144) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(ok(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(145) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(146) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(147) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(149) TRUE

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(151) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U11^12
mark1 > U11^12

Status:
U11^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(153) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U11^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(154) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(156) TRUE

(157) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(158) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x2
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(159) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(160) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > [SPLITAT1, mark1]

Status:
SPLITAT1: multiset
mark1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SPLITAT2, mark1]

Status:
SPLITAT2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(163) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(165) TRUE

(166) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(167) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(172) TRUE

(173) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(174) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > U101^12
mark1 > U101^12

Status:
U101^12: [1,2]
ok1: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U101^13: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(177) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(179) TRUE

(180) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(181) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
U212 > [PROPER1, U1013, splitAt2, U113]
U312 > [PROPER1, U1013, splitAt2, U113]
U412 > [PROPER1, U1013, splitAt2, U113]
cons2 > [PROPER1, U1013, splitAt2, U113]
U513 > [PROPER1, U1013, splitAt2, U113]
afterNth2 > [PROPER1, U1013, splitAt2, U113]
U612 > [PROPER1, U1013, splitAt2, U113]
U712 > [PROPER1, U1013, splitAt2, U113]
pair2 > [PROPER1, U1013, splitAt2, U113]
U814 > [PROPER1, U1013, splitAt2, U113]
U822 > [PROPER1, U1013, splitAt2, U113]
U912 > [PROPER1, U1013, splitAt2, U113]
and2 > [PROPER1, U1013, splitAt2, U113]
take2 > [PROPER1, U1013, splitAt2, U113]
sel2 > [PROPER1, U1013, splitAt2, U113]

Status:
PROPER1: [1]
U1013: multiset
splitAt2: multiset
U113: multiset
U212: multiset
U312: multiset
U412: multiset
cons2: multiset
U513: multiset
afterNth2: multiset
U612: multiset
U712: multiset
pair2: multiset
U814: multiset
U822: multiset
U912: multiset
and2: multiset
take2: multiset
sel2: multiset


The following usable rules [FROCOS05] were oriented: none

(182) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(fst(X)) → PROPER(X)
PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(183) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(fst(X)) → PROPER(X)
PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
fst1 > [PROPER1, tail1]
snd1 > [PROPER1, tail1]
natsFrom1 > [PROPER1, tail1]
s1 > [PROPER1, tail1]
head1 > [PROPER1, tail1]
isNatural1 > [PROPER1, tail1]
isLNat1 > [PROPER1, tail1]
isPLNat1 > [PROPER1, tail1]

Status:
PROPER1: multiset
fst1: multiset
snd1: multiset
natsFrom1: multiset
s1: multiset
head1: multiset
isNatural1: multiset
isLNat1: multiset
isPLNat1: multiset
tail1: multiset


The following usable rules [FROCOS05] were oriented: none

(184) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(186) TRUE

(187) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(188) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fst(x1)  =  fst(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U31(x1, x2)  =  U31(x1)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1)
U71(x1, x2)  =  U71(x1)
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  U81(x1)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1)
and(x1, x2)  =  and(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
fst1: multiset
U1013: multiset
splitAt2: multiset
U111: multiset
U211: multiset
U311: multiset
U412: multiset
cons2: multiset
natsFrom1: multiset
U512: multiset
afterNth2: multiset
U611: multiset
U711: multiset
pair2: multiset
U811: multiset
U822: multiset
U911: multiset
and1: multiset
take2: multiset
sel2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(189) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(190) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
snd(x1)  =  snd(x1)
s(x1)  =  x1
head(x1)  =  head(x1)
tail(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, snd1, head1]

Status:
ACTIVE1: multiset
snd1: multiset
head1: multiset


The following usable rules [FROCOS05] were oriented: none

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  s(x1)
tail(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
tail(x1)  =  tail(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
tail1: multiset


The following usable rules [FROCOS05] were oriented: none

(195) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(197) TRUE

(198) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.