(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U101(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U11(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U11(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U41(tt, N)) → CONS(N, natsFrom(s(N)))
ACTIVE(U41(tt, N)) → NATSFROM(s(N))
ACTIVE(U41(tt, N)) → S(N)
ACTIVE(U51(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U51(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U71(tt, XS)) → PAIR(nil, XS)
ACTIVE(U81(tt, N, X, XS)) → U821(splitAt(N, XS), X)
ACTIVE(U81(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U82(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U82(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(afterNth(N, XS)) → U111(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(afterNth(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(afterNth(N, XS)) → ISNATURAL(N)
ACTIVE(afterNth(N, XS)) → ISLNAT(XS)
ACTIVE(fst(pair(X, Y))) → U211(and(isLNat(X), isLNat(Y)), X)
ACTIVE(fst(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(fst(pair(X, Y))) → ISLNAT(X)
ACTIVE(fst(pair(X, Y))) → ISLNAT(Y)
ACTIVE(head(cons(N, XS))) → U311(and(isNatural(N), isLNat(XS)), N)
ACTIVE(head(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(head(cons(N, XS))) → ISNATURAL(N)
ACTIVE(head(cons(N, XS))) → ISLNAT(XS)
ACTIVE(isLNat(afterNth(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(afterNth(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(afterNth(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(cons(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(cons(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(cons(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(fst(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(natsFrom(V1))) → ISNATURAL(V1)
ACTIVE(isLNat(snd(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(tail(V1))) → ISLNAT(V1)
ACTIVE(isLNat(take(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(take(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(take(V1, V2))) → ISLNAT(V2)
ACTIVE(isNatural(head(V1))) → ISLNAT(V1)
ACTIVE(isNatural(s(V1))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isNatural(sel(V1, V2))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(pair(V1, V2))) → AND(isLNat(V1), isLNat(V2))
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V1)
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(splitAt(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isPLNat(splitAt(V1, V2))) → ISNATURAL(V1)
ACTIVE(isPLNat(splitAt(V1, V2))) → ISLNAT(V2)
ACTIVE(natsFrom(N)) → U411(isNatural(N), N)
ACTIVE(natsFrom(N)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → U511(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(sel(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(sel(N, XS)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → ISLNAT(XS)
ACTIVE(snd(pair(X, Y))) → U611(and(isLNat(X), isLNat(Y)), Y)
ACTIVE(snd(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(snd(pair(X, Y))) → ISLNAT(X)
ACTIVE(snd(pair(X, Y))) → ISLNAT(Y)
ACTIVE(splitAt(0, XS)) → U711(isLNat(XS), XS)
ACTIVE(splitAt(0, XS)) → ISLNAT(XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U811(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(N), and(isNatural(X), isLNat(XS)))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(N)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(X), isLNat(XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → ISLNAT(XS)
ACTIVE(tail(cons(N, XS))) → U911(and(isNatural(N), isLNat(XS)), XS)
ACTIVE(tail(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(tail(cons(N, XS))) → ISNATURAL(N)
ACTIVE(tail(cons(N, XS))) → ISLNAT(XS)
ACTIVE(take(N, XS)) → U1011(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(take(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(take(N, XS)) → ISNATURAL(N)
ACTIVE(take(N, XS)) → ISLNAT(XS)
ACTIVE(U101(X1, X2, X3)) → U1011(active(X1), X2, X3)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → SND(active(X))
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → U811(active(X1), X2, X3, X4)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → U821(active(X1), X2)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → U911(active(X1), X2)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
FST(mark(X)) → FST(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
SND(mark(X)) → SND(X)
U211(mark(X1), X2) → U211(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
NATSFROM(mark(X)) → NATSFROM(X)
S(mark(X)) → S(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U821(mark(X1), X2) → U821(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(U101(X1, X2, X3)) → U1011(proper(X1), proper(X2), proper(X3))
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → FST(proper(X))
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → SND(proper(X))
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → U811(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → U821(proper(X1), proper(X2))
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → U911(proper(X1), proper(X2))
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → ISNATURAL(proper(X))
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → ISLNAT(proper(X))
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → ISPLNAT(proper(X))
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
FST(ok(X)) → FST(X)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
SND(ok(X)) → SND(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U411(ok(X1), ok(X2)) → U411(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
NATSFROM(ok(X)) → NATSFROM(X)
S(ok(X)) → S(X)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
HEAD(ok(X)) → HEAD(X)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U821(ok(X1), ok(X2)) → U821(X1, X2)
U911(ok(X1), ok(X2)) → U911(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATURAL(ok(X)) → ISNATURAL(X)
ISLNAT(ok(X)) → ISLNAT(X)
ISPLNAT(ok(X)) → ISPLNAT(X)
TAIL(ok(X)) → TAIL(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 30 SCCs with 134 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(ok(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(ok(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISPLNAT(x1)  =  ISPLNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  x2
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  x1
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x2
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  x2
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x4)
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > [ISPLNAT1, ok1, U411, natsFrom1, pair1, U811, U821, isNatural1, isLNat1, isPLNat1, take1, proper1] > 0 > [tt, mark, nil]

Status:
ISPLNAT1: [1]
ok1: [1]
tt: []
mark: []
U411: [1]
natsFrom1: [1]
pair1: [1]
nil: []
U811: [1]
U821: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
take1: [1]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(ok(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(ok(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISLNAT(x1)  =  ISLNAT(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  x2
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  x1
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x2
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  x2
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x4)
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > [ISLNAT1, ok1, U411, natsFrom1, pair1, U811, U821, isNatural1, isLNat1, isPLNat1, take1, proper1] > 0 > [tt, mark, nil]

Status:
ISLNAT1: [1]
ok1: [1]
tt: []
mark: []
U411: [1]
natsFrom1: [1]
pair1: [1]
nil: []
U811: [1]
U821: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
take1: [1]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(ok(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(ok(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATURAL(x1)  =  ISNATURAL(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  x2
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  x1
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x2
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  x2
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x4)
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > [ISNATURAL1, ok1, U411, natsFrom1, pair1, U811, U821, isNatural1, isLNat1, isPLNat1, take1, proper1] > 0 > [tt, mark, nil]

Status:
ISNATURAL1: [1]
ok1: [1]
tt: []
mark: []
U411: [1]
natsFrom1: [1]
pair1: [1]
nil: []
U811: [1]
U821: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
take1: [1]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
SEL1 > isLNat
[active1, fst1] > U1013 > [splitAt2, U113, snd1, afterNth2, U612, U712, and2, isPLNat, 0, sel2] > U513 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U1013 > [splitAt2, U113, snd1, afterNth2, U612, U712, and2, isPLNat, 0, sel2] > pair2 > U212 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U1013 > [splitAt2, U113, snd1, afterNth2, U612, U712, and2, isPLNat, 0, sel2] > pair2 > cons2 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U1013 > [splitAt2, U113, snd1, afterNth2, U612, U712, and2, isPLNat, 0, sel2] > U814 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U312 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U412 > cons2 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > nil > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U822 > pair2 > U212 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U822 > pair2 > cons2 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > U912 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, fst1] > take2 > [mark1, tt, natsFrom1, s1, head1, isNatural, top] > isLNat

Status:
SEL1: [1]
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,2,1]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [1,3,2]
head1: [1]
afterNth2: [2,1]
U612: [2,1]
U712: [1,2]
pair2: [1,2]
nil: []
U814: [2,3,1,4]
U822: [1,2]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
take2: [2,1]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x2
mark(x1)  =  mark
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1)
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x4)
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  and(x1)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  sel(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [ok1, active1, U1011, splitAt1, U111, U211, U311, U411, U511, afterNth1, U611, U711, pair1, U811, U821, U911, and1, isLNat1, take1, sel1, proper1] > mark > [nil, top]
0 > [ok1, active1, U1011, splitAt1, U111, U211, U311, U411, U511, afterNth1, U611, U711, pair1, U811, U821, U911, and1, isLNat1, take1, sel1, proper1] > tt > [nil, top]

Status:
mark: []
ok1: [1]
active1: [1]
U1011: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U411: [1]
U511: [1]
afterNth1: [1]
U611: [1]
U711: [1]
pair1: [1]
nil: []
U811: [1]
U821: [1]
U911: [1]
and1: [1]
isLNat1: [1]
take1: [1]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > U212 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > U412 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > [s1, U814] > U822 > [cons2, U912] > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > [s1, U814] > U822 > pair2 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > U513 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > afterNth2 > U113 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > U612 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > nil > tt > pair2 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > tail1 > [cons2, U912] > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > take2 > U1013 > [snd1, ok1] > [SEL1, mark1]
top > active1 > [splitAt2, U312, U712, and2, isNatural1, isLNat1, sel2, proper1] > 0 > tt > pair2 > [snd1, ok1] > [SEL1, mark1]

Status:
SEL1: [1]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
splitAt2: [1,2]
U113: [1,2,3]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,3,2]
afterNth2: [2,1]
U612: [1,2]
U712: [2,1]
pair2: [1,2]
nil: []
U814: [4,2,1,3]
U822: [2,1]
U912: [1,2]
and2: [2,1]
isNatural1: [1]
isLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > U211 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > tt > fst1 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > tt > nil > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > U312 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > natsFrom1 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > U812 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > U612 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U711, 0] > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > take2 > [ok1, U1011]

Status:
ok1: [1]
active1: [1]
U1011: [1]
tt: []
fst1: [1]
snd1: [1]
U211: [1]
U312: [1,2]
U412: [1,2]
cons2: [1,2]
natsFrom1: [1]
head1: [1]
U612: [2,1]
U711: [1]
pair2: [2,1]
nil: []
U812: [2,1]
U822: [1,2]
and1: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [tt, nil] > [fst1, U212] > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > [U113, snd1, afterNth2] > splitAt2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > [U113, snd1, afterNth2] > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > natsFrom1 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > s1 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > head1 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > U822 > cons2 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > U822 > pair2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U312 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > cons2 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > natsFrom1 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > s1 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U612 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U712 > pair2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > splitAt2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > U822 > cons2 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > U822 > pair2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U912 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > isPLNat > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > take2 > U1013 > [fst1, U212] > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > take2 > U1013 > splitAt2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > sel2 > U513 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > sel2 > and2 > [TAKE1, mark1, tail1] > isNatural > [isLNat, 0, top]

Status:
TAKE1: [1]
mark1: [1]
active1: [1]
U1013: [2,1,3]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [1,2,3]
head1: [1]
afterNth2: [1,2]
U612: [2,1]
U712: [2,1]
pair2: [1,2]
nil: []
U814: [4,1,3,2]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > U212 > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > natsFrom1 > U412 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > head1 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > U612 > [mark1, fst1] > top
[active1, tail1, proper1] > U312 > [mark1, fst1] > top
[active1, tail1, proper1] > U912 > [mark1, fst1] > top
[active1, tail1, proper1] > isPLNat1 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > take2 > U1013 > [mark1, fst1] > top
[active1, tail1, proper1] > take2 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > 0
[active1, tail1, proper1] > sel2 > U513 > [cons2, afterNth2, and2] > [mark1, fst1] > top

Status:
TAKE2: [1,2]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
U212: [1,2]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [2,3,1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [2,4,3,1]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [TAIL1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [TAIL1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [TAIL1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [TAIL1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [TAIL1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [TAIL1, ok1, nil, isPLNat1]

Status:
TAIL1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > U822 > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > take2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > sel2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]

Status:
AND1: [1]
ok1: [1]
active1: [1]
U1011: [1]
tt: []
fst1: [1]
splitAt1: [1]
snd1: [1]
U212: [2,1]
U311: [1]
U411: [1]
cons2: [2,1]
s1: [1]
U511: [1]
head1: [1]
afterNth1: [1]
U712: [1,2]
pair2: [2,1]
nil: []
U812: [1,2]
U822: [1,2]
U912: [1,2]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U212 > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U612 > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U912 > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > and2 > [mark1, fst1, snd1] > [AND2, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > isPLNat > [mark1, fst1, snd1] > [AND2, isLNat, 0]
top > [AND2, isLNat, 0]

Status:
AND2: [1,2]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [1,3,2]
head1: [1]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [1,4,2,3]
U822: [1,2]
U912: [1,2]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(ok(X1), ok(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(ok(X1), ok(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > U822 > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > take2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > sel2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]

Status:
U91^11: [1]
ok1: [1]
active1: [1]
U1011: [1]
tt: []
fst1: [1]
splitAt1: [1]
snd1: [1]
U212: [2,1]
U311: [1]
U411: [1]
cons2: [2,1]
s1: [1]
U511: [1]
head1: [1]
afterNth1: [1]
U712: [1,2]
pair2: [2,1]
nil: []
U812: [1,2]
U822: [1,2]
U912: [1,2]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(mark(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U212 > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U612 > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U912 > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > and2 > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > isPLNat > [mark1, fst1, snd1] > [U91^12, isLNat, 0]
top > [U91^12, isLNat, 0]

Status:
U91^12: [1,2]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [1,3,2]
head1: [1]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [1,4,2,3]
U822: [1,2]
U912: [1,2]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(ok(X1), ok(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(ok(X1), ok(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  x2
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U513, take2, proper1] > U1013 > fst1 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > U1013 > [splitAt2, and2, isLNat1, isPLNat1] > U712 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > fst1 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > natsFrom1 > U412 > [U312, cons2, U912, tail1] > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > pair2 > [splitAt2, and2, isLNat1, isPLNat1] > U712 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > pair2 > U212 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > pair2 > [U312, cons2, U912, tail1] > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > nil > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > [tt, 0] > U822 > [U312, cons2, U912, tail1] > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > afterNth2 > U113 > [splitAt2, and2, isLNat1, isPLNat1] > U712 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > U612 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > U814 > [splitAt2, and2, isLNat1, isPLNat1] > U712 > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > U814 > U822 > [U312, cons2, U912, tail1] > [ok1, mark1, snd1, s1, head1]
[active1, U513, take2, proper1] > sel2 > [splitAt2, and2, isLNat1, isPLNat1] > U712 > [ok1, mark1, snd1, s1, head1]
top > [ok1, mark1, snd1, s1, head1]

Status:
ok1: [1]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,2,1]
snd1: [1]
U212: [1,2]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [1,3,2]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [1,2]
nil: []
U814: [4,3,1,2]
U822: [1,2]
U912: [2,1]
and2: [2,1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U212, s1, U822, take2, sel2] > U1013 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U1013 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > U712 > pair2 > cons2 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > U712 > pair2 > cons2 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > U712 > pair2 > cons2 > isLNat1
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > U712 > nil > tt
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > [and2, isPLNat1] > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > [and2, isPLNat1] > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > [U113, afterNth2] > splitAt2 > [and2, isPLNat1] > isLNat1
[active1, U212, s1, U822, take2, sel2] > U312 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U312 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U412 > cons2 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U412 > cons2 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U412 > cons2 > isLNat1
[active1, U212, s1, U822, take2, sel2] > U513 > head1 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U513 > head1 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U513 > head1 > isLNat1
[active1, U212, s1, U822, take2, sel2] > U612 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U612 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > U712 > pair2 > cons2 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > U712 > pair2 > cons2 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > U712 > pair2 > cons2 > isLNat1
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > U712 > nil > tt
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > [and2, isPLNat1] > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > [and2, isPLNat1] > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > U814 > splitAt2 > [and2, isPLNat1] > isLNat1
[active1, U212, s1, U822, take2, sel2] > tail1 > U912 > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > tail1 > U912 > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > tail1 > [and2, isPLNat1] > [mark1, natsFrom1] > U82^12
[active1, U212, s1, U822, take2, sel2] > tail1 > [and2, isPLNat1] > [mark1, natsFrom1] > top
[active1, U212, s1, U822, take2, sel2] > tail1 > [and2, isPLNat1] > isLNat1
0 > tt
0 > isLNat1

Status:
U82^12: [1,2]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [3,2,1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [4,1,3,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  x2
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U81^11 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > U111 > [tt, splitAt1] > nil > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > U111 > [tt, splitAt1] > U813 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > U111 > [tt, splitAt1] > [isLNat1, sel1] > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > natsFrom1 > U412 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > pair2 > [cons2, U822] > U813 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > pair2 > [cons2, U822] > [isLNat1, sel1] > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > pair2 > U612 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > U912 > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > isPLNat1 > [isLNat1, sel1] > [ok1, U1011, snd1, U211, U311]
[active1, afterNth1, proper1] > take2 > [isLNat1, sel1] > [ok1, U1011, snd1, U211, U311]
0 > [tt, splitAt1] > nil > [ok1, U1011, snd1, U211, U311]
0 > [tt, splitAt1] > U813 > [ok1, U1011, snd1, U211, U311]
0 > [tt, splitAt1] > [isLNat1, sel1] > [ok1, U1011, snd1, U211, U311]
top > [ok1, U1011, snd1, U211, U311]

Status:
U81^11: [1]
ok1: [1]
active1: [1]
U1011: [1]
tt: []
splitAt1: [1]
U111: [1]
snd1: [1]
U211: [1]
U311: [1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
afterNth1: [1]
U612: [1,2]
pair2: [1,2]
nil: []
U813: [1,2,3]
U822: [2,1]
U912: [1,2]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U81^11 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > [splitAt2, U113, U412, cons2, U612, U712, pair2, U912] > U212 > mark1 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > [splitAt2, U113, U412, cons2, U612, U712, pair2, U912] > U312 > mark1 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > U513 > mark1 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > U822 > mark1 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > tail1 > mark1 > isLNat1
[tt, nil, 0] > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > take2 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > [splitAt2, U113, U412, cons2, U612, U712, pair2, U912] > U212 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > [splitAt2, U113, U412, cons2, U612, U712, pair2, U912] > U312 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > U513 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > U822 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > tail1 > mark1 > isLNat1
top > [active1, U1013, fst1, s1, afterNth2, U814, and2, sel2] > take2 > mark1 > isLNat1

Status:
U81^11: [1]
mark1: [1]
active1: [1]
U1013: [2,3,1]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [1,2,3]
U212: [1,2]
U312: [1,2]
U412: [1,2]
cons2: [1,2]
s1: [1]
U513: [3,2,1]
afterNth2: [2,1]
U612: [2,1]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [3,4,2,1]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PAIR1 > [isLNat, 0]
[active1, U712] > U1013 > fst1 > U212 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U1013 > [splitAt2, U113, snd1, afterNth2, U612, and2, isPLNat, take2, sel2] > U513 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > tt > fst1 > U212 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > tt > [splitAt2, U113, snd1, afterNth2, U612, and2, isPLNat, take2, sel2] > U513 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > tt > pair2 > U212 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > tt > pair2 > cons2 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > tt > U822 > cons2 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U312 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U412 > cons2 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U814 > [splitAt2, U113, snd1, afterNth2, U612, and2, isPLNat, take2, sel2] > U513 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U814 > U822 > cons2 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]
[active1, U712] > U912 > [mark1, natsFrom1, head1, nil, isNatural, top] > [isLNat, 0]

Status:
PAIR1: [1]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [2,3,1]
head1: [1]
afterNth2: [2,1]
U612: [2,1]
U712: [2,1]
pair2: [1,2]
nil: []
U814: [3,2,1,4]
U822: [2,1]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
take2: [2,1]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U312, U612, nil, U912] > U1013 > splitAt2 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > U212 > mark1
[active1, U312, U612, nil, U912] > [head1, afterNth2, and2, tail1] > U113 > splitAt2 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > [head1, afterNth2, and2, tail1] > [snd1, natsFrom1, s1, isNatural1, isPLNat1, take2] > tt > splitAt2 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > [head1, afterNth2, and2, tail1] > [snd1, natsFrom1, s1, isNatural1, isPLNat1, take2] > U412 > mark1
[active1, U312, U612, nil, U912] > [U712, 0] > tt > splitAt2 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > U822 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > sel2 > [snd1, natsFrom1, s1, isNatural1, isPLNat1, take2] > tt > splitAt2 > [cons2, pair2, U814] > mark1
[active1, U312, U612, nil, U912] > sel2 > [snd1, natsFrom1, s1, isNatural1, isPLNat1, take2] > U412 > mark1
[active1, U312, U612, nil, U912] > sel2 > U513 > mark1

Status:
PAIR2: [1,2]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
splitAt2: [2,1]
U113: [1,3,2]
snd1: [1]
U212: [1,2]
U312: [2,1]
U412: [1,2]
cons2: [1,2]
natsFrom1: [1]
s1: [1]
U513: [3,1,2]
head1: [1]
afterNth2: [2,1]
U612: [2,1]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [4,1,3,2]
U822: [2,1]
U912: [2,1]
and2: [1,2]
isNatural1: [1]
isPLNat1: [1]
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  x1
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  x4
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  and(x1)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  x1
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U511, proper1] > [active1, U1013, fst1, U412, head1, and1, tail1] > [PAIR1, ok1, tt, U211, cons1, s1, U611, pair1, U821, U911, isNatural1, sel1] > mark
[U511, proper1] > nil > [PAIR1, ok1, tt, U211, cons1, s1, U611, pair1, U821, U911, isNatural1, sel1] > mark
[U511, proper1] > 0 > mark
top > [active1, U1013, fst1, U412, head1, and1, tail1] > [PAIR1, ok1, tt, U211, cons1, s1, U611, pair1, U821, U911, isNatural1, sel1] > mark

Status:
PAIR1: [1]
ok1: [1]
active1: [1]
U1013: [2,1,3]
tt: []
mark: []
fst1: [1]
U211: [1]
U412: [2,1]
cons1: [1]
s1: [1]
U511: [1]
head1: [1]
U611: [1]
pair1: [1]
nil: []
U821: [1]
U911: [1]
and1: [1]
isNatural1: [1]
tail1: [1]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > top
[U511, U711, proper1] > 0 > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]

Status:
U71^11: [1]
ok1: [1]
mark: []
active1: [1]
U1012: [2,1]
tt: []
fst1: [1]
splitAt2: [1,2]
U111: [1]
U211: [1]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U511: [1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U711: [1]
pair2: [1,2]
nil: []
U814: [3,4,2,1]
U822: [1,2]
U912: [1,2]
and1: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U1013 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > U212 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > snd1 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U312 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > cons2 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > s1 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U612 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > tt
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U822 > cons2 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > isPLNat1 > and2 > [U71^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > tail1 > and2 > [U71^11, mark1, head1]
0 > U712 > nil > [U71^11, mark1, head1]
0 > U712 > nil > tt

Status:
U71^11: [1]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,2,1]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [3,1,2]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [1,2]
nil: []
U814: [3,4,1,2]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > top
[U511, U711, proper1] > 0 > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]

Status:
U61^11: [1]
ok1: [1]
mark: []
active1: [1]
U1012: [2,1]
tt: []
fst1: [1]
splitAt2: [1,2]
U111: [1]
U211: [1]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U511: [1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U711: [1]
pair2: [1,2]
nil: []
U814: [3,4,2,1]
U822: [1,2]
U912: [1,2]
and1: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U1013 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > U212 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > snd1 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U312 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > cons2 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > s1 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U612 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > tt
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U822 > cons2 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > isPLNat1 > and2 > [U61^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > tail1 > and2 > [U61^11, mark1, head1]
0 > U712 > nil > [U61^11, mark1, head1]
0 > U712 > nil > tt

Status:
U61^11: [1]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,2,1]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [3,1,2]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [1,2]
nil: []
U814: [3,4,1,2]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(93) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(95) TRUE

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
AFTERNTH1 > isLNat
[active1, U1013, splitAt2] > [tt, 0] > [fst1, U113, snd1, afterNth2, and2, isPLNat, sel2] > [U212, pair2] > cons2 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > [tt, 0] > [fst1, U113, snd1, afterNth2, and2, isPLNat, sel2] > U513 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > [tt, 0] > U712 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > [tt, 0] > nil > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > [tt, 0] > U822 > [U212, pair2] > cons2 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > U312 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > U412 > cons2 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > U612 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > U814 > U822 > [U212, pair2] > cons2 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > U912 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > take2 > [fst1, U113, snd1, afterNth2, and2, isPLNat, sel2] > [U212, pair2] > cons2 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat
[active1, U1013, splitAt2] > take2 > [fst1, U113, snd1, afterNth2, and2, isPLNat, sel2] > U513 > [mark1, natsFrom1, s1, head1, isNatural, top] > isLNat

Status:
AFTERNTH1: [1]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [2,3,1]
head1: [1]
afterNth2: [2,1]
U612: [2,1]
U712: [2,1]
pair2: [1,2]
nil: []
U814: [3,4,1,2]
U822: [2,1]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x2
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  x2
U41(x1, x2)  =  x2
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  x2
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > natsFrom1 > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > pair2 > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > nil > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > [U812, U822] > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > U912 > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > [tt, cons2] > isNatural1 > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > 0 > [ok1, U211, U611, U711]
[active1, U1011, snd1, afterNth1, proper1] > sel2 > [ok1, U211, U611, U711]

Status:
ok1: [1]
active1: [1]
U1011: [1]
tt: []
snd1: [1]
U211: [1]
cons2: [1,2]
natsFrom1: [1]
afterNth1: [1]
U611: [1]
U711: [1]
pair2: [2,1]
nil: []
U812: [2,1]
U822: [2,1]
U912: [2,1]
isNatural1: [1]
0: []
sel2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U1013, U212, s1, nil, U912] > tt > cons2 > [splitAt2, U814] > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > tt > cons2 > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U113 > [splitAt2, U814] > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U312 > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U412 > cons2 > [splitAt2, U814] > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U412 > cons2 > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U412 > natsFrom1 > isNatural > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U513 > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > head1 > [afterNth2, and2, take2] > isNatural > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > [U612, pair2, U822] > cons2 > [splitAt2, U814] > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > [U612, pair2, U822] > cons2 > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > [U612, pair2, U822] > [afterNth2, and2, take2] > isNatural > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > U712 > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > isPLNat > isNatural > isLNat > [AFTERNTH2, mark1, fst1, snd1, 0]
[active1, U1013, U212, s1, nil, U912] > sel2 > [AFTERNTH2, mark1, fst1, snd1, 0]
top > [AFTERNTH2, mark1, fst1, snd1, 0]

Status:
AFTERNTH2: [1,2]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [1,3,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [1,2]
natsFrom1: [1]
s1: [1]
U513: [3,2,1]
head1: [1]
afterNth2: [2,1]
U612: [2,1]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [4,1,2,3]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(102) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(104) TRUE

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [HEAD1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [HEAD1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [HEAD1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [HEAD1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [HEAD1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [HEAD1, ok1, nil, isPLNat1]

Status:
HEAD1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(109) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(111) TRUE

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x2
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  x1
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  x1
cons(x1, x2)  =  cons(x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  x3
head(x1)  =  x1
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  and(x1)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  x2
0  =  0
sel(x1, x2)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > cons1 > [active1, U111, U312, s1, pair2, U822, and1] > [ok1, fst1, isLNat1, tail1, 0] > tt > [U51^12, mark]
proper1 > nil > [ok1, fst1, isLNat1, tail1, 0] > tt > [U51^12, mark]
proper1 > isPLNat1 > [active1, U111, U312, s1, pair2, U822, and1] > [ok1, fst1, isLNat1, tail1, 0] > tt > [U51^12, mark]
top > [active1, U111, U312, s1, pair2, U822, and1] > [ok1, fst1, isLNat1, tail1, 0] > tt > [U51^12, mark]

Status:
U51^12: [2,1]
ok1: [1]
mark: []
active1: [1]
tt: []
fst1: [1]
U111: [1]
U312: [2,1]
cons1: [1]
s1: [1]
pair2: [2,1]
nil: []
U822: [2,1]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U312, U712, nil, sel2] > tt > fst1 > U212 > mark1
[active1, U312, U712, nil, sel2] > tt > fst1 > and2 > mark1
[active1, U312, U712, nil, sel2] > tt > fst1 > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > splitAt2 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > tt > splitAt2 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > tt > splitAt2 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > snd1 > U612 > mark1
[active1, U312, U712, nil, sel2] > tt > snd1 > and2 > mark1
[active1, U312, U712, nil, sel2] > tt > snd1 > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > natsFrom1 > mark1
[active1, U312, U712, nil, sel2] > tt > s1 > U814 > mark1
[active1, U312, U712, nil, sel2] > tt > s1 > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > head1 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > tt > head1 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > tt > head1 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > head1 > and2 > mark1
[active1, U312, U712, nil, sel2] > tt > afterNth2 > U113 > mark1
[active1, U312, U712, nil, sel2] > tt > afterNth2 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > tt > afterNth2 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > tt > afterNth2 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > afterNth2 > and2 > mark1
[active1, U312, U712, nil, sel2] > tt > pair2 > U212 > mark1
[active1, U312, U712, nil, sel2] > tt > pair2 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > tt > pair2 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > tt > pair2 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > tt > pair2 > U612 > mark1
[active1, U312, U712, nil, sel2] > tt > U822 > mark1
[active1, U312, U712, nil, sel2] > U412 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > U412 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > U412 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > U412 > natsFrom1 > mark1
[active1, U312, U712, nil, sel2] > U412 > s1 > U814 > mark1
[active1, U312, U712, nil, sel2] > U412 > s1 > isLNat > mark1
[active1, U312, U712, nil, sel2] > U513 > mark1
[active1, U312, U712, nil, sel2] > isPLNat > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > isPLNat > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > isPLNat > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > isPLNat > and2 > mark1
[active1, U312, U712, nil, sel2] > tail1 > [cons2, isNatural] > U814 > mark1
[active1, U312, U712, nil, sel2] > tail1 > [cons2, isNatural] > U912 > mark1
[active1, U312, U712, nil, sel2] > tail1 > [cons2, isNatural] > isLNat > mark1
[active1, U312, U712, nil, sel2] > tail1 > and2 > mark1
[active1, U312, U712, nil, sel2] > take2 > U1013 > mark1
[active1, U312, U712, nil, sel2] > take2 > isLNat > mark1

Status:
mark1: [1]
active1: [1]
U1013: [3,2,1]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [1,2,3]
snd1: [1]
U212: [2,1]
U312: [1,2]
U412: [2,1]
cons2: [1,2]
natsFrom1: [1]
s1: [1]
U513: [1,2,3]
head1: [1]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [3,1,2,4]
U822: [2,1]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [S1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [S1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [S1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [S1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [S1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [S1, ok1, nil, isPLNat1]

Status:
S1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(123) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(125) TRUE

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(ok(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  NATSFROM(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [NATSFROM1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [NATSFROM1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [NATSFROM1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [NATSFROM1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [NATSFROM1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [NATSFROM1, ok1, nil, isPLNat1]

Status:
NATSFROM1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(130) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(132) TRUE

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  x1
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1)
U82(x1, x2)  =  x1
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
CONS1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
nil > tt > fst1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
nil > tt > pair1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
0 > [natsFrom1, U513, head1, afterNth2, U811, isLNat1, sel2, proper1] > tt > fst1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
0 > [natsFrom1, U513, head1, afterNth2, U811, isLNat1, sel2, proper1] > tt > pair1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
0 > [natsFrom1, U513, head1, afterNth2, U811, isLNat1, sel2, proper1] > U912 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
0 > [natsFrom1, U513, head1, afterNth2, U811, isLNat1, sel2, proper1] > take1 > U1013 > fst1 > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]
top > [ok1, mark, U211, U311, U411, isNatural1, isPLNat1, tail1]

Status:
CONS1: [1]
ok1: [1]
mark: []
U1013: [2,1,3]
tt: []
fst1: [1]
U211: [1]
U311: [1]
U411: [1]
natsFrom1: [1]
U513: [3,2,1]
head1: [1]
afterNth2: [2,1]
pair1: [1]
nil: []
U811: [1]
U912: [1,2]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take1: [1]
0: []
sel2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U113 > [U1013, splitAt2, U814, U822, take2] > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U212 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U312 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U412 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U513 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U612 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > U912 > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
[active1, cons2, afterNth2, U712, pair2, isLNat, tail1, 0, sel2] > [and2, isPLNat] > [mark1, fst1, snd1, head1] > [tt, isNatural] > nil > CONS2
top > CONS2

Status:
CONS2: [1,2]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
U513: [1,3,2]
head1: [1]
afterNth2: [1,2]
U612: [2,1]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [1,4,2,3]
U822: [1,2]
U912: [1,2]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(137) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(139) TRUE

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  x2
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U41^11 > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > pair2 > U212 > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > pair2 > [cons2, U912] > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > pair2 > and2 > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > pair2 > [isLNat1, 0] > tt > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > nil > tt > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > U814 > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > U822 > [cons2, U912] > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > isNatural1 > and2 > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > isNatural1 > [isLNat1, 0] > tt > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > tail1 > [cons2, U912] > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > sel2 > [U512, afterNth2] > [ok1, U411, s1, U711] > top
proper1 > [active1, U1012, splitAt2, U112, snd1, head1, take2] > sel2 > [isLNat1, 0] > tt > [ok1, U411, s1, U711] > top

Status:
U41^11: [1]
ok1: [1]
active1: [1]
U1012: [1,2]
tt: []
splitAt2: [1,2]
U112: [1,2]
snd1: [1]
U212: [1,2]
U411: [1]
cons2: [1,2]
s1: [1]
U512: [1,2]
head1: [1]
afterNth2: [1,2]
U711: [1]
pair2: [2,1]
nil: []
U814: [2,4,1,3]
U822: [1,2]
U912: [2,1]
and2: [1,2]
isNatural1: [1]
isLNat1: [1]
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U41^11 > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > [U1013, take2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > splitAt2 > [U113, U513, afterNth2, and2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > splitAt2 > U712 > nil > [tt, s1, U814, U822] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > U212 > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > U412 > [tt, s1, U814, U822] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > cons2 > [tt, s1, U814, U822] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > cons2 > [U113, U513, afterNth2, and2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > pair2 > [U113, U513, afterNth2, and2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > pair2 > U612 > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > tail1 > [U113, U513, afterNth2, and2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]
[active1, U312, U912] > sel2 > [U113, U513, afterNth2, and2] > [mark1, natsFrom1, head1, 0, top] > [isNatural, isLNat, isPLNat]

Status:
U41^11: [1]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
splitAt2: [1,2]
U113: [3,1,2]
U212: [1,2]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [2,3,1]
head1: [1]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [4,3,1,2]
U822: [1,2]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(144) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(145) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(146) TRUE

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > U822 > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > [tt, splitAt1, U212, cons2, pair2] > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > take2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]
proper1 > [active1, U411, s1, head1, U712, nil, U812, U912, isNatural1, isPLNat1] > sel2 > [isLNat1, 0] > [ok1, U1011, fst1, snd1, U311, U511, afterNth1, tail1]

Status:
U31^11: [1]
ok1: [1]
active1: [1]
U1011: [1]
tt: []
fst1: [1]
splitAt1: [1]
snd1: [1]
U212: [2,1]
U311: [1]
U411: [1]
cons2: [2,1]
s1: [1]
U511: [1]
head1: [1]
afterNth1: [1]
U712: [1,2]
pair2: [2,1]
nil: []
U812: [1,2]
U822: [1,2]
U912: [1,2]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U113 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U212 > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U513 > [U1013, tt, splitAt2, U312, U412, natsFrom1, head1, U814, U822, take2] > nil > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U612 > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > U912 > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > and2 > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
[active1, cons2, afterNth2, U712, pair2, isNatural, sel2] > isPLNat > [mark1, fst1, snd1] > [U31^12, isLNat, 0]
top > [U31^12, isLNat, 0]

Status:
U31^12: [1,2]
mark1: [1]
active1: [1]
U1013: [3,1,2]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [1,3,2]
head1: [1]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [1,4,2,3]
U822: [1,2]
U912: [1,2]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(151) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(153) TRUE

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U1012 > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > [U211, pair2] > [mark, sel2] > top
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > splitAt2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U412 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U814 > U822 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > U912 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > cons2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > afterNth2 > [and1, isNatural1] > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > U612 > [ok1, fst1, U111, natsFrom1, head1]
[U511, U711, proper1] > [active1, isLNat1, isPLNat1, tail1, take1] > U312 > [mark, sel2] > top
[U511, U711, proper1] > 0 > [tt, nil] > [ok1, fst1, U111, natsFrom1, head1]

Status:
U21^11: [1]
ok1: [1]
mark: []
active1: [1]
U1012: [2,1]
tt: []
fst1: [1]
splitAt2: [1,2]
U111: [1]
U211: [1]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U511: [1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U711: [1]
pair2: [1,2]
nil: []
U814: [3,4,2,1]
U822: [1,2]
U912: [1,2]
and1: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
take1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(156) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U1013 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > U212 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > fst1 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > snd1 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U312 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > cons2 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U412 > s1 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U612 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U712 > nil > tt
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > U822 > cons2 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > isPLNat1 > and2 > [U21^11, mark1, head1]
[active1, splitAt2, U113, U513, afterNth2, pair2, U814, U912, take2, sel2, top] > tail1 > and2 > [U21^11, mark1, head1]
0 > U712 > nil > [U21^11, mark1, head1]
0 > U712 > nil > tt

Status:
U21^11: [1]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,2,1]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [3,1,2]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [1,2]
nil: []
U814: [3,4,1,2]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(158) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(160) TRUE

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(ok(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(ok(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  SND(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [SND1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [SND1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [SND1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [SND1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [SND1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [SND1, ok1, nil, isPLNat1]

Status:
SND1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(163) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(165) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(167) TRUE

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x3)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  x1
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  x2
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x4)
U82(x1, x2)  =  x1
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  x2
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U11^11 > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > tt > nil > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > natsFrom1 > [ok1, U211, U311, s1, head1] > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U511 > [ok1, U211, U311, s1, head1] > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U612 > [ok1, U211, U311, s1, head1] > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U912 > [ok1, U211, U311, s1, head1] > mark
0 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > [and1, isPLNat1] > [ok1, U211, U311, s1, head1] > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > tt > nil > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > natsFrom1 > [ok1, U211, U311, s1, head1] > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U511 > [ok1, U211, U311, s1, head1] > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U612 > [ok1, U211, U311, s1, head1] > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > U912 > [ok1, U211, U311, s1, head1] > mark
proper1 > [active1, fst1, splitAt2, U111, cons2, pair2, U813, isLNat1, tail1, sel2] > [and1, isPLNat1] > [ok1, U211, U311, s1, head1] > mark
top > mark

Status:
U11^11: [1]
ok1: [1]
mark: []
active1: [1]
tt: []
fst1: [1]
splitAt2: [2,1]
U111: [1]
U211: [1]
U311: [1]
cons2: [1,2]
natsFrom1: [1]
s1: [1]
U511: [1]
head1: [1]
U612: [2,1]
pair2: [2,1]
nil: []
U813: [2,1,3]
U912: [2,1]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(170) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, U312, s1, U814, U822, isPLNat, take2, sel2] > [U1013, tt, splitAt2, U113, U212, U412, cons2, natsFrom1, U513, afterNth2, U612, U712, pair2, U912, and2, tail1] > [mark1, isNatural, isLNat] > top
[active1, U312, s1, U814, U822, isPLNat, take2, sel2] > [U1013, tt, splitAt2, U113, U212, U412, cons2, natsFrom1, U513, afterNth2, U612, U712, pair2, U912, and2, tail1] > nil

Status:
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
splitAt2: [1,2]
U113: [1,2,3]
U212: [1,2]
U312: [2,1]
U412: [2,1]
cons2: [1,2]
natsFrom1: [1]
s1: [1]
U513: [1,2,3]
afterNth2: [1,2]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [2,1,4,3]
U822: [2,1]
U912: [2,1]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(172) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(173) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(174) TRUE

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  x2
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > U211 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > tt > fst1 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > tt > nil > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > U312 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > natsFrom1 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U412, cons2, isLNat1, isPLNat1] > U812 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > U612 > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > [U711, 0] > [ok1, U1011]
proper1 > [active1, snd1, head1, pair2, U822, and1, isNatural1] > take2 > [ok1, U1011]

Status:
ok1: [1]
active1: [1]
U1011: [1]
tt: []
fst1: [1]
snd1: [1]
U211: [1]
U312: [1,2]
U412: [1,2]
cons2: [1,2]
natsFrom1: [1]
head1: [1]
U612: [2,1]
U711: [1]
pair2: [2,1]
nil: []
U812: [2,1]
U822: [1,2]
and1: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(177) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [tt, nil] > [fst1, U212] > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > [U113, snd1, afterNth2] > splitAt2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > [U113, snd1, afterNth2] > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > natsFrom1 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > s1 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > head1 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > U822 > cons2 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > [tt, nil] > U822 > pair2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U312 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > cons2 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > natsFrom1 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U412 > s1 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U612 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U712 > pair2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > splitAt2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > U822 > cons2 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U814 > U822 > pair2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > U912 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > isPLNat > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > take2 > U1013 > [fst1, U212] > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > take2 > U1013 > splitAt2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > sel2 > U513 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]
active1 > sel2 > and2 > [SPLITAT1, mark1, tail1] > isNatural > [isLNat, 0, top]

Status:
SPLITAT1: [1]
mark1: [1]
active1: [1]
U1013: [2,1,3]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
snd1: [1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [1,2,3]
head1: [1]
afterNth2: [1,2]
U612: [2,1]
U712: [2,1]
pair2: [1,2]
nil: []
U814: [4,1,3,2]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(179) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(180) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > U212 > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > natsFrom1 > U412 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > head1 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > [tt, splitAt2, U113, U712, pair2, nil, U814, U822] > U612 > [mark1, fst1] > top
[active1, tail1, proper1] > U312 > [mark1, fst1] > top
[active1, tail1, proper1] > U912 > [mark1, fst1] > top
[active1, tail1, proper1] > isPLNat1 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > take2 > U1013 > [mark1, fst1] > top
[active1, tail1, proper1] > take2 > [cons2, afterNth2, and2] > [mark1, fst1] > top
[active1, tail1, proper1] > 0
[active1, tail1, proper1] > sel2 > U513 > [cons2, afterNth2, and2] > [mark1, fst1] > top

Status:
SPLITAT2: [1,2]
mark1: [1]
active1: [1]
U1013: [1,2,3]
tt: []
fst1: [1]
splitAt2: [1,2]
U113: [3,1,2]
U212: [1,2]
U312: [2,1]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [2,3,1]
head1: [1]
afterNth2: [2,1]
U612: [1,2]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [2,4,3,1]
U822: [2,1]
U912: [2,1]
and2: [2,1]
isPLNat1: [1]
tail1: [1]
take2: [2,1]
0: []
sel2: [2,1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(181) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(182) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(183) TRUE

(184) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  FST(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x2
and(x1, x2)  =  and(x2)
isNatural(x1)  =  x1
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > [tt, isLNat1, sel1] > U822 > [FST1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U412 > cons2 > U311 > [FST1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > [tt, isLNat1, sel1] > U822 > [FST1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U711 > pair2 > cons2 > U311 > [FST1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > U813 > U822 > [FST1, ok1, nil, isPLNat1]
[0, proper1] > [active1, splitAt1, U111, U211, head1, and1, top] > take2 > [tt, isLNat1, sel1] > U822 > [FST1, ok1, nil, isPLNat1]

Status:
FST1: [1]
ok1: [1]
active1: [1]
tt: []
splitAt1: [1]
U111: [1]
U211: [1]
U311: [1]
U412: [1,2]
cons2: [2,1]
head1: [1]
U711: [1]
pair2: [1,2]
nil: []
U813: [2,1,3]
U822: [1,2]
and1: [1]
isLNat1: [1]
isPLNat1: [1]
take2: [1,2]
0: []
sel1: [1]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(186) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(187) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, cons2, pair2, take2] > U312 > mark1
[active1, tt, cons2, pair2, take2] > U412 > s1 > mark1
[active1, tt, cons2, pair2, take2] > U612 > mark1
[active1, tt, cons2, pair2, take2] > [and2, sel2] > [U1013, fst1, splitAt2, U113, U212, U513, afterNth2, U814, U822, U912, isNatural, isLNat, isPLNat, tail1] > U712 > nil > mark1
0 > U712 > nil > mark1

Status:
mark1: [1]
active1: [1]
U1013: [1,3,2]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,1,2]
U212: [2,1]
U312: [2,1]
U412: [1,2]
cons2: [2,1]
s1: [1]
U513: [1,2,3]
afterNth2: [2,1]
U612: [1,2]
U712: [1,2]
pair2: [2,1]
nil: []
U814: [1,3,4,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
isNatural: []
isLNat: []
isPLNat: []
tail1: [1]
take2: [2,1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(188) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(190) TRUE

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2)
tt  =  tt
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  x3
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1)
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  x2
pair(x1, x2)  =  pair(x1)
nil  =  nil
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  x2
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  x2
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
U101^11 > mark
[splitAt2, U511, U822, isPLNat1, 0, proper1] > U1012 > [ok1, snd1, U211, U311, afterNth1, U611, pair1, U911, tail1] > top > mark
[splitAt2, U511, U822, isPLNat1, 0, proper1] > tt > nil > mark
[splitAt2, U511, U822, isPLNat1, 0, proper1] > sel2 > [ok1, snd1, U211, U311, afterNth1, U611, pair1, U911, tail1] > top > mark

Status:
U101^11: [1]
ok1: [1]
mark: []
U1012: [2,1]
tt: []
splitAt2: [1,2]
snd1: [1]
U211: [1]
U311: [1]
U511: [1]
afterNth1: [1]
U611: [1]
pair1: [1]
nil: []
U822: [2,1]
U911: [1]
isPLNat1: [1]
tail1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, fst1, cons2, U612, pair2, take2, sel2] > U212 > [mark1, tt, natsFrom1]
[active1, fst1, cons2, U612, pair2, take2, sel2] > U312 > [mark1, tt, natsFrom1]
[active1, fst1, cons2, U612, pair2, take2, sel2] > U412 > [mark1, tt, natsFrom1]
[active1, fst1, cons2, U612, pair2, take2, sel2] > [U513, afterNth2, and2] > [U1013, splitAt2, U113, snd1, U814, U822] > [mark1, tt, natsFrom1]
[active1, fst1, cons2, U612, pair2, take2, sel2] > [U712, nil] > [mark1, tt, natsFrom1]
[active1, fst1, cons2, U612, pair2, take2, sel2] > [U912, tail1] > [mark1, tt, natsFrom1]

Status:
mark1: [1]
active1: [1]
U1013: [3,2,1]
tt: []
fst1: [1]
splitAt2: [2,1]
U113: [3,2,1]
snd1: [1]
U212: [1,2]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
natsFrom1: [1]
U513: [1,3,2]
afterNth2: [1,2]
U612: [2,1]
U712: [2,1]
pair2: [2,1]
nil: []
U814: [2,1,3,4]
U822: [2,1]
U912: [2,1]
and2: [1,2]
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(195) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(197) TRUE

(198) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(199) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2, x3)
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)
active(x1)  =  x1
tt  =  tt
mark(x1)  =  mark
nil  =  nil
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[splitAt2, U312, cons2, U712, take2, proper1] > U1013 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > U113 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > U212 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > U513 > afterNth2 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > U814 > U822 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > U912 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > and2 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > sel2 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > tt > afterNth2 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > tt > pair2 > U612 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > tt > U822 > [U412, s1, mark, nil]
[splitAt2, U312, cons2, U712, take2, proper1] > 0 > [U412, s1, mark, nil]
top > [U412, s1, mark, nil]

Status:
U1013: [3,2,1]
splitAt2: [1,2]
U113: [1,2,3]
U212: [1,2]
U312: [1,2]
U412: [1,2]
cons2: [1,2]
s1: [1]
U513: [2,1,3]
afterNth2: [1,2]
U612: [1,2]
U712: [1,2]
pair2: [1,2]
U814: [2,1,3,4]
U822: [1,2]
U912: [1,2]
and2: [1,2]
take2: [1,2]
sel2: [2,1]
tt: []
mark: []
nil: []
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(200) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(fst(X)) → PROPER(X)
PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(201) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(fst(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
fst(x1)  =  fst(x1)
snd(x1)  =  x1
natsFrom(x1)  =  x1
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  x1
active(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2, x3)
tt  =  tt
mark(x1)  =  mark
splitAt(x1, x2)  =  x1
U11(x1, x2, x3)  =  U11(x1)
U21(x1, x2)  =  U21
U31(x1, x2)  =  U31(x1)
U41(x1, x2)  =  x2
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s
U51(x1, x2, x3)  =  x1
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  U71(x1)
pair(x1, x2)  =  pair(x1)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x2)
U91(x1, x2)  =  U91(x1)
and(x1, x2)  =  x2
take(x1, x2)  =  take(x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
nil > tt > s > proper1 > fst1 > PROPER1 > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]
nil > tt > s > proper1 > fst1 > U21 > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]
nil > tt > s > proper1 > U1013 > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]
nil > tt > s > proper1 > U311 > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]
nil > tt > s > proper1 > afterNth > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]
nil > tt > s > proper1 > sel2 > [mark, U111, cons2, U611, U711, pair1, U814, U821, U911, take1, 0, top]

Status:
PROPER1: [1]
fst1: [1]
U1013: [3,1,2]
tt: []
mark: []
U111: [1]
U21: []
U311: [1]
cons2: [2,1]
s: []
afterNth: []
U611: [1]
U711: [1]
pair1: [1]
nil: []
U814: [4,3,2,1]
U821: [1]
U911: [1]
take1: [1]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(202) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isPLNat(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
snd(x1)  =  x1
natsFrom(x1)  =  x1
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
active(x1)  =  active
U101(x1, x2, x3)  =  U101
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  fst
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
U21(x1, x2)  =  U21
U31(x1, x2)  =  x1
U41(x1, x2)  =  U41
cons(x1, x2)  =  cons
s(x1)  =  x1
U51(x1, x2, x3)  =  U51
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair
nil  =  nil
U81(x1, x2, x3, x4)  =  U81
U82(x1, x2)  =  U82
U91(x1, x2)  =  U91
and(x1, x2)  =  and
take(x1, x2)  =  take
0  =  0
sel(x1, x2)  =  sel
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[isPLNat1, proper1] > [tt, nil] > [PROPER1, active, U101, mark, fst, splitAt, U11, U21, U41, cons, U51, afterNth, U61, pair, U81, U82, U91, and, take, 0, sel]
top > [PROPER1, active, U101, mark, fst, splitAt, U11, U21, U41, cons, U51, afterNth, U61, pair, U81, U82, U91, and, take, 0, sel]

Status:
PROPER1: [1]
isPLNat1: [1]
active: []
U101: []
tt: []
mark: []
fst: []
splitAt: []
U11: []
U21: []
U41: []
cons: []
U51: []
afterNth: []
U61: []
pair: []
nil: []
U81: []
U82: []
U91: []
and: []
take: []
0: []
sel: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(204) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(natsFrom(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
snd(x1)  =  x1
natsFrom(x1)  =  natsFrom(x1)
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
mark(x1)  =  x1
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x2, x3)
U21(x1, x2)  =  x2
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x2, x3)
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  and(x2)
isPLNat(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[active1, tt, U822] > [natsFrom1, U412]
[active1, tt, U822] > splitAt1 > [cons2, U812] > [U611, pair2, and1]
[active1, tt, U822] > splitAt1 > [cons2, U812] > U911
[active1, tt, U822] > splitAt1 > U711 > [U611, pair2, and1]
[active1, tt, U822] > U312
[active1, tt, U822] > nil
[active1, tt, U822] > take2 > [U611, pair2, and1]
[active1, tt, U822] > sel2 > [U512, afterNth2] > U112
[active1, tt, U822] > sel2 > [U512, afterNth2] > [U611, pair2, and1]
0 > U711 > [U611, pair2, and1]

Status:
natsFrom1: [1]
active1: [1]
tt: []
splitAt1: [1]
U112: [2,1]
U312: [1,2]
U412: [2,1]
cons2: [2,1]
U512: [2,1]
afterNth2: [1,2]
U611: [1]
U711: [1]
pair2: [1,2]
nil: []
U812: [2,1]
U822: [2,1]
U911: [1]
and1: [1]
take2: [2,1]
0: []
sel2: [2,1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(206) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(207) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(snd(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
snd(x1)  =  snd(x1)
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  tail(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  x1
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s
U51(x1, x2, x3)  =  U51(x2, x3)
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  x2
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  x2
isPLNat(x1)  =  isPLNat(x1)
take(x1, x2)  =  x1
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PROPER1 > [mark, isPLNat1]
tail1 > [mark, isPLNat1]
fst1 > [mark, isPLNat1]
[U111, afterNth1] > snd1 > [mark, isPLNat1]
[U111, afterNth1] > splitAt1 > [mark, isPLNat1]
U212 > [mark, isPLNat1]
[U512, sel2] > [mark, isPLNat1]
U612 > [mark, isPLNat1]
[U712, nil] > tt > snd1 > [mark, isPLNat1]
[U712, nil] > tt > splitAt1 > [mark, isPLNat1]
[U712, nil] > tt > natsFrom1 > [U311, U412, cons2] > s > [mark, isPLNat1]
U812 > splitAt1 > [mark, isPLNat1]
U822 > [U311, U412, cons2] > s > [mark, isPLNat1]
U911 > [mark, isPLNat1]
0 > tt > snd1 > [mark, isPLNat1]
0 > tt > splitAt1 > [mark, isPLNat1]
0 > tt > natsFrom1 > [U311, U412, cons2] > s > [mark, isPLNat1]
top > [mark, isPLNat1]

Status:
PROPER1: [1]
snd1: [1]
tail1: [1]
tt: []
mark: []
fst1: [1]
splitAt1: [1]
U111: [1]
U212: [2,1]
U311: [1]
U412: [1,2]
cons2: [2,1]
natsFrom1: [1]
s: []
U512: [1,2]
afterNth1: [1]
U612: [2,1]
U712: [1,2]
nil: []
U812: [1,2]
U822: [1,2]
U911: [1]
isPLNat1: [1]
0: []
sel2: [1,2]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(208) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(209) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  x1
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  U101
tt  =  tt
mark(x1)  =  mark
fst(x1)  =  fst
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
snd(x1)  =  snd
U21(x1, x2)  =  U21
U31(x1, x2)  =  U31
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61(x1)
U71(x1, x2)  =  U71(x1)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1)
U91(x1, x2)  =  U91(x1)
and(x1, x2)  =  and(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
PROPER1 > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > fst > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > splitAt > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > U21 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > natsFrom1 > U411 > cons2 > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > pair2 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > nil > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > tail1 > U911 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
U101 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > tail1 > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > fst > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > splitAt > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > U21 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > natsFrom1 > U411 > cons2 > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > pair2 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > nil > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > tail1 > U911 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
0 > [isNatural1, isLNat1, tt, U11, snd, U711, U814, U821, take2, proper1] > tail1 > and1 > [mark, U31, afterNth, isPLNat1, sel2] > [s1, U513, U611]
top > [s1, U513, U611]

Status:
PROPER1: [1]
isNatural1: [1]
isLNat1: [1]
U101: []
tt: []
mark: []
fst: []
splitAt: []
U11: []
snd: []
U21: []
U31: []
U411: [1]
cons2: [2,1]
natsFrom1: [1]
s1: [1]
U513: [3,2,1]
afterNth: []
U611: [1]
U711: [1]
pair2: [2,1]
nil: []
U814: [4,3,2,1]
U821: [1]
U911: [1]
and1: [1]
isPLNat1: [1]
tail1: [1]
take2: [1,2]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(210) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(211) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  head(x1)
active(x1)  =  active(x1)
U101(x1, x2, x3)  =  x3
tt  =  tt
mark(x1)  =  x1
fst(x1)  =  fst(x1)
splitAt(x1, x2)  =  splitAt(x2)
U11(x1, x2, x3)  =  U11(x3)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x2)
U31(x1, x2)  =  x2
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x3
afterNth(x1, x2)  =  afterNth(x2)
U61(x1, x2)  =  x2
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  x2
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  isLNat(x1)
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  tail(x1)
take(x1, x2)  =  x2
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [cons2, natsFrom1, U822, proper1] > [PROPER1, head1] > isLNat1 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > [PROPER1, head1] > isLNat1 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > fst1 > isLNat1 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > fst1 > isLNat1 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > [U111, afterNth1] > splitAt1 > U711 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > [U111, afterNth1] > splitAt1 > U711 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > [U111, afterNth1] > splitAt1 > isLNat1 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > [U111, afterNth1] > splitAt1 > isLNat1 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > U412 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > U812 > splitAt1 > U711 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > U812 > splitAt1 > U711 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > U812 > splitAt1 > isLNat1 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > U812 > splitAt1 > isLNat1 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > 0 > [tt, pair2, nil] > [snd1, isNatural1, isPLNat1] > [U911, tail1, ok1]
active1 > [cons2, natsFrom1, U822, proper1] > 0 > [tt, pair2, nil] > U211 > [U911, tail1, ok1]
top > [U911, tail1, ok1]

Status:
PROPER1: [1]
head1: [1]
active1: [1]
tt: []
fst1: [1]
splitAt1: [1]
U111: [1]
snd1: [1]
U211: [1]
U412: [1,2]
cons2: [2,1]
natsFrom1: [1]
afterNth1: [1]
U711: [1]
pair2: [2,1]
nil: []
U812: [2,1]
U822: [1,2]
U911: [1]
isNatural1: [1]
isLNat1: [1]
isPLNat1: [1]
tail1: [1]
0: []
proper1: [1]
ok1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(212) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(213) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(214) TRUE

(215) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(216) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
fst(x1)  =  x1
U101(x1, x2, x3)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)
active(x1)  =  active(x1)
tt  =  tt
mark(x1)  =  mark
nil  =  nil
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
active1 > [splitAt2, afterNth2, pair2, take2, sel2, tt, mark, nil, 0, proper1]
top > [splitAt2, afterNth2, pair2, take2, sel2, tt, mark, nil, 0, proper1]

Status:
splitAt2: [1,2]
afterNth2: [1,2]
pair2: [1,2]
take2: [2,1]
sel2: [2,1]
active1: [1]
tt: []
mark: []
nil: []
0: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(217) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(218) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
fst(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
U81(x1, x2, x3, x4)  =  U81(x1, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
tail(x1)  =  x1
active(x1)  =  active(x1)
tt  =  tt
mark(x1)  =  x1
splitAt(x1, x2)  =  x2
afterNth(x1, x2)  =  afterNth(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
take(x1, x2)  =  take(x1, x2)
0  =  0
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U113, U513, head1, active1, nil, take2, proper1] > [ACTIVE1, U1013, U212, U412, and2, afterNth2] > natsFrom1 > [tt, isNatural, isPLNat] > cons2 > U312 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > [ACTIVE1, U1013, U212, U412, and2, afterNth2] > natsFrom1 > [tt, isNatural, isPLNat] > cons2 > U813 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > [ACTIVE1, U1013, U212, U412, and2, afterNth2] > natsFrom1 > [tt, isNatural, isPLNat] > cons2 > isLNat > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > U912 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [U612, U712, pair2] > cons2 > U312 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [U612, U712, pair2] > cons2 > U813 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [U612, U712, pair2] > cons2 > isLNat > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [tt, isNatural, isPLNat] > cons2 > U312 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [tt, isNatural, isPLNat] > cons2 > U813 > [U822, sel2]
[U113, U513, head1, active1, nil, take2, proper1] > 0 > [tt, isNatural, isPLNat] > cons2 > isLNat > [U822, sel2]
top > [U822, sel2]

Status:
ACTIVE1: [1]
U1013: [2,3,1]
U113: [2,3,1]
U212: [2,1]
U312: [2,1]
U412: [2,1]
cons2: [1,2]
natsFrom1: [1]
U513: [3,2,1]
head1: [1]
U612: [2,1]
U712: [1,2]
U813: [3,1,2]
U822: [2,1]
U912: [1,2]
and2: [1,2]
active1: [1]
tt: []
afterNth2: [2,1]
pair2: [2,1]
nil: []
isNatural: []
isLNat: []
isPLNat: []
take2: [1,2]
0: []
sel2: [1,2]
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(219) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(220) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
fst(x1)  =  x1
snd(x1)  =  snd(x1)
s(x1)  =  s(x1)
tail(x1)  =  tail(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  U101
tt  =  tt
mark(x1)  =  mark
splitAt(x1, x2)  =  splitAt
U11(x1, x2, x3)  =  U11
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons
natsFrom(x1)  =  natsFrom
U51(x1, x2, x3)  =  x1
head(x1)  =  head
afterNth(x1, x2)  =  afterNth
U61(x1, x2)  =  U61
U71(x1, x2)  =  U71
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x3, x4)
U82(x1, x2)  =  U82
U91(x1, x2)  =  U91(x2)
and(x1, x2)  =  and
isNatural(x1)  =  isNatural
isLNat(x1)  =  isLNat
isPLNat(x1)  =  isPLNat
take(x1, x2)  =  take
0  =  0
sel(x1, x2)  =  sel
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVE1 > nil
[head, isLNat] > [U411, isNatural, proper1] > tt > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
[head, isLNat] > [U411, isNatural, proper1] > cons > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
[head, isLNat] > [U411, isNatural, proper1] > take > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
[head, isLNat] > [U411, isNatural, proper1] > 0 > nil
top > [U411, isNatural, proper1] > tt > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
top > [U411, isNatural, proper1] > cons > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
top > [U411, isNatural, proper1] > take > [snd1, s1, tail1, U101, mark, splitAt, U11, U212, U31, natsFrom, afterNth, U61, U71, pair2, U812, U82, U911, and, isPLNat, sel] > nil
top > [U411, isNatural, proper1] > 0 > nil

Status:
ACTIVE1: [1]
snd1: [1]
s1: [1]
tail1: [1]
U101: []
tt: []
mark: []
splitAt: []
U11: []
U212: [2,1]
U31: []
U411: [1]
cons: []
natsFrom: []
head: []
afterNth: []
U61: []
U71: []
pair2: [2,1]
nil: []
U812: [2,1]
U82: []
U911: [1]
and: []
isNatural: []
isLNat: []
isPLNat: []
take: []
0: []
sel: []
proper1: [1]
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(222) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fst(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
fst(x1)  =  fst(x1)
active(x1)  =  x1
U101(x1, x2, x3)  =  U101
tt  =  tt
mark(x1)  =  mark
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  x2
snd(x1)  =  snd(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2)  =  U41(x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  head(x1)
afterNth(x1, x2)  =  x2
U61(x1, x2)  =  U61(x2)
U71(x1, x2)  =  U71(x2)
pair(x1, x2)  =  pair(x1, x2)
nil  =  nil
U81(x1, x2, x3, x4)  =  U81(x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  and(x2)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  x1
isPLNat(x1)  =  x1
tail(x1)  =  tail(x1)
take(x1, x2)  =  x1
0  =  0
sel(x1, x2)  =  x2
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic path order with status [LPO].
Quasi-Precedence:
ACTIVE1 > [U101, mark, cons2, nil]
fst1 > U212 > [U101, mark, cons2, nil]
fst1 > and1 > [U101, mark, cons2, nil]
snd1 > and1 > [U101, mark, cons2, nil]
U411 > [U101, mark, cons2, nil]
U513 > [U311, head1] > isNatural1 > and1 > [U101, mark, cons2, nil]
[U611, pair2, U822] > U212 > [U101, mark, cons2, nil]
[U611, pair2, U822] > and1 > [U101, mark, cons2, nil]
[U711, 0] > tt > [U101, mark, cons2, nil]
U813 > splitAt2 > isNatural1 > and1 > [U101, mark, cons2, nil]
tail1 > isNatural1 > and1 > [U101, mark, cons2, nil]
top > [U101, mark, cons2, nil]

Status:
ACTIVE1: [1]
fst1: [1]
U101: []
tt: []
mark: []
splitAt2: [1,2]
snd1: [1]
U212: [1,2]
U311: [1]
U411: [1]
cons2: [2,1]
U513: [3,1,2]
head1: [1]
U611: [1]
U711: [1]
pair2: [2,1]
nil: []
U813: [2,3,1]
U822: [2,1]
and1: [1]
isNatural1: [1]
tail1: [1]
0: []
top: []


The following usable rules [FROCOS05] were oriented:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(223) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(224) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(225) TRUE

(226) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.