(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(tt, N, XS)) → FST(splitAt(N, XS))
ACTIVE(U101(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U11(tt, N, XS)) → SND(splitAt(N, XS))
ACTIVE(U11(tt, N, XS)) → SPLITAT(N, XS)
ACTIVE(U41(tt, N)) → CONS(N, natsFrom(s(N)))
ACTIVE(U41(tt, N)) → NATSFROM(s(N))
ACTIVE(U41(tt, N)) → S(N)
ACTIVE(U51(tt, N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(U51(tt, N, XS)) → AFTERNTH(N, XS)
ACTIVE(U71(tt, XS)) → PAIR(nil, XS)
ACTIVE(U81(tt, N, X, XS)) → U821(splitAt(N, XS), X)
ACTIVE(U81(tt, N, X, XS)) → SPLITAT(N, XS)
ACTIVE(U82(pair(YS, ZS), X)) → PAIR(cons(X, YS), ZS)
ACTIVE(U82(pair(YS, ZS), X)) → CONS(X, YS)
ACTIVE(afterNth(N, XS)) → U111(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(afterNth(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(afterNth(N, XS)) → ISNATURAL(N)
ACTIVE(afterNth(N, XS)) → ISLNAT(XS)
ACTIVE(fst(pair(X, Y))) → U211(and(isLNat(X), isLNat(Y)), X)
ACTIVE(fst(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(fst(pair(X, Y))) → ISLNAT(X)
ACTIVE(fst(pair(X, Y))) → ISLNAT(Y)
ACTIVE(head(cons(N, XS))) → U311(and(isNatural(N), isLNat(XS)), N)
ACTIVE(head(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(head(cons(N, XS))) → ISNATURAL(N)
ACTIVE(head(cons(N, XS))) → ISLNAT(XS)
ACTIVE(isLNat(afterNth(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(afterNth(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(afterNth(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(cons(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(cons(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(cons(V1, V2))) → ISLNAT(V2)
ACTIVE(isLNat(fst(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(natsFrom(V1))) → ISNATURAL(V1)
ACTIVE(isLNat(snd(V1))) → ISPLNAT(V1)
ACTIVE(isLNat(tail(V1))) → ISLNAT(V1)
ACTIVE(isLNat(take(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isLNat(take(V1, V2))) → ISNATURAL(V1)
ACTIVE(isLNat(take(V1, V2))) → ISLNAT(V2)
ACTIVE(isNatural(head(V1))) → ISLNAT(V1)
ACTIVE(isNatural(s(V1))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isNatural(sel(V1, V2))) → ISNATURAL(V1)
ACTIVE(isNatural(sel(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(pair(V1, V2))) → AND(isLNat(V1), isLNat(V2))
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V1)
ACTIVE(isPLNat(pair(V1, V2))) → ISLNAT(V2)
ACTIVE(isPLNat(splitAt(V1, V2))) → AND(isNatural(V1), isLNat(V2))
ACTIVE(isPLNat(splitAt(V1, V2))) → ISNATURAL(V1)
ACTIVE(isPLNat(splitAt(V1, V2))) → ISLNAT(V2)
ACTIVE(natsFrom(N)) → U411(isNatural(N), N)
ACTIVE(natsFrom(N)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → U511(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(sel(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(sel(N, XS)) → ISNATURAL(N)
ACTIVE(sel(N, XS)) → ISLNAT(XS)
ACTIVE(snd(pair(X, Y))) → U611(and(isLNat(X), isLNat(Y)), Y)
ACTIVE(snd(pair(X, Y))) → AND(isLNat(X), isLNat(Y))
ACTIVE(snd(pair(X, Y))) → ISLNAT(X)
ACTIVE(snd(pair(X, Y))) → ISLNAT(Y)
ACTIVE(splitAt(0, XS)) → U711(isLNat(XS), XS)
ACTIVE(splitAt(0, XS)) → ISLNAT(XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → U811(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(N), and(isNatural(X), isLNat(XS)))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(N)
ACTIVE(splitAt(s(N), cons(X, XS))) → AND(isNatural(X), isLNat(XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → ISNATURAL(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → ISLNAT(XS)
ACTIVE(tail(cons(N, XS))) → U911(and(isNatural(N), isLNat(XS)), XS)
ACTIVE(tail(cons(N, XS))) → AND(isNatural(N), isLNat(XS))
ACTIVE(tail(cons(N, XS))) → ISNATURAL(N)
ACTIVE(tail(cons(N, XS))) → ISLNAT(XS)
ACTIVE(take(N, XS)) → U1011(and(isNatural(N), isLNat(XS)), N, XS)
ACTIVE(take(N, XS)) → AND(isNatural(N), isLNat(XS))
ACTIVE(take(N, XS)) → ISNATURAL(N)
ACTIVE(take(N, XS)) → ISLNAT(XS)
ACTIVE(U101(X1, X2, X3)) → U1011(active(X1), X2, X3)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(fst(X)) → FST(active(X))
ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(splitAt(X1, X2)) → SPLITAT(active(X1), X2)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → SPLITAT(X1, active(X2))
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → SND(active(X))
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → U411(active(X1), X2)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → NATSFROM(active(X))
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → U511(active(X1), X2, X3)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(active(X1), X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → AFTERNTH(X1, active(X2))
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → U611(active(X1), X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → U711(active(X1), X2)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → U811(active(X1), X2, X3, X4)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → U821(active(X1), X2)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → U911(active(X1), X2)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
FST(mark(X)) → FST(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
SND(mark(X)) → SND(X)
U211(mark(X1), X2) → U211(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
NATSFROM(mark(X)) → NATSFROM(X)
S(mark(X)) → S(X)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)
HEAD(mark(X)) → HEAD(X)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
U821(mark(X1), X2) → U821(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(U101(X1, X2, X3)) → U1011(proper(X1), proper(X2), proper(X3))
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → FST(proper(X))
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → SPLITAT(proper(X1), proper(X2))
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → SND(proper(X))
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → U411(proper(X1), proper(X2))
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → NATSFROM(proper(X))
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → U511(proper(X1), proper(X2), proper(X3))
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → AFTERNTH(proper(X1), proper(X2))
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → U611(proper(X1), proper(X2))
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → U711(proper(X1), proper(X2))
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → U811(proper(X1), proper(X2), proper(X3), proper(X4))
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → U821(proper(X1), proper(X2))
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → U911(proper(X1), proper(X2))
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → ISNATURAL(proper(X))
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → ISLNAT(proper(X))
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → ISPLNAT(proper(X))
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
FST(ok(X)) → FST(X)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
SND(ok(X)) → SND(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U411(ok(X1), ok(X2)) → U411(X1, X2)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
NATSFROM(ok(X)) → NATSFROM(X)
S(ok(X)) → S(X)
U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
HEAD(ok(X)) → HEAD(X)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
U611(ok(X1), ok(X2)) → U611(X1, X2)
U711(ok(X1), ok(X2)) → U711(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U821(ok(X1), ok(X2)) → U821(X1, X2)
U911(ok(X1), ok(X2)) → U911(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATURAL(ok(X)) → ISNATURAL(X)
ISLNAT(ok(X)) → ISLNAT(X)
ISPLNAT(ok(X)) → ISPLNAT(X)
TAIL(ok(X)) → TAIL(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 30 SCCs with 134 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPLNAT(ok(X)) → ISPLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPLNAT(ok(X)) → ISPLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
ok1 > ISPLNAT1

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLNAT(ok(X)) → ISLNAT(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLNAT(ok(X)) → ISLNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
ok1 > ISLNAT1

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATURAL(ok(X)) → ISNATURAL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATURAL(ok(X)) → ISNATURAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
ok1 > ISNATURAL1

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SEL1

The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SEL2

The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > TAKE1

The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > TAKE2

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > TAIL1

The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > TAIL1

The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > AND1
mark > AND1

The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > AND1

The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(ok(X1), ok(X2)) → U911(X1, X2)
U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(ok(X1), ok(X2)) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U91^11
mark > U91^11

The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(mark(X1), X2) → U911(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(mark(X1), X2) → U911(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U911(x1, x2)  =  U911(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U91^11

The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(ok(X1), ok(X2)) → U821(X1, X2)
U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(ok(X1), ok(X2)) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U82^11
mark > U82^11

The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U821(mark(X1), X2) → U821(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U821(mark(X1), X2) → U821(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U821(x1, x2)  =  U821(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U82^11

The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(ok(X1), ok(X2), ok(X3), ok(X4)) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x3, x4)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U81^12
mark > U81^12

The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U811(mark(X1), X2, X3, X4) → U811(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U811(x1, x2, x3, x4)  =  U811(x1, x2, x4)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U81^13

The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PAIR1

The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > PAIR2

The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(79) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(81) TRUE

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(ok(X1), ok(X2)) → U711(X1, X2)
U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(ok(X1), ok(X2)) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U71^11
mark > U71^11

The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(mark(X1), X2) → U711(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(mark(X1), X2) → U711(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U71^11

The following usable rules [FROCOS05] were oriented: none

(86) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(87) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(88) TRUE

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(ok(X1), ok(X2)) → U611(X1, X2)
U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(ok(X1), ok(X2)) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U61^11
mark > U61^11

The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(mark(X1), X2) → U611(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U611(mark(X1), X2) → U611(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U611(x1, x2)  =  U611(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U61^11

The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(95) TRUE

(96) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(97) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AFTERNTH1

The following usable rules [FROCOS05] were oriented: none

(98) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(99) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > AFTERNTH2

The following usable rules [FROCOS05] were oriented: none

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(ok(X1), ok(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(104) TRUE

(105) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(106) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > HEAD1

The following usable rules [FROCOS05] were oriented: none

(107) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(108) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > HEAD1

The following usable rules [FROCOS05] were oriented: none

(109) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(110) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(111) TRUE

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(ok(X1), ok(X2), ok(X3)) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U511(x1, x2, x3)  =  U511(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > U51^13

The following usable rules [FROCOS05] were oriented: none

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U511(mark(X1), X2, X3) → U511(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(115) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U511(mark(X1), X2, X3) → U511(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U51^13

The following usable rules [FROCOS05] were oriented: none

(116) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(117) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(118) TRUE

(119) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > S1

The following usable rules [FROCOS05] were oriented: none

(121) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(122) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > S1

The following usable rules [FROCOS05] were oriented: none

(123) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(124) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(125) TRUE

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(ok(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(127) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(ok(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  NATSFROM(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > NATSFROM1

The following usable rules [FROCOS05] were oriented: none

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(129) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > NATSFROM1

The following usable rules [FROCOS05] were oriented: none

(130) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(131) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(132) TRUE

(133) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(134) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > CONS1
mark > CONS1

The following usable rules [FROCOS05] were oriented: none

(135) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(136) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > CONS1

The following usable rules [FROCOS05] were oriented: none

(137) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(138) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(139) TRUE

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2)) → U411(X1, X2)
U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(141) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2)) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U41^11
mark > U41^11

The following usable rules [FROCOS05] were oriented: none

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2) → U411(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(143) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2) → U411(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2)  =  U411(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U41^11

The following usable rules [FROCOS05] were oriented: none

(144) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(145) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(146) TRUE

(147) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(148) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U31^11
mark > U31^11

The following usable rules [FROCOS05] were oriented: none

(149) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(150) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U31^11

The following usable rules [FROCOS05] were oriented: none

(151) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(152) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(153) TRUE

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(155) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive Path Order [RPO].
Precedence:
ok1 > U21^11
mark > U21^11

The following usable rules [FROCOS05] were oriented: none

(156) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(157) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1)
mark(x1)  =  mark(x1)

Recursive Path Order [RPO].
Precedence:
mark1 > U21^11

The following usable rules [FROCOS05] were oriented: none

(158) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(159) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(160) TRUE

(161) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(ok(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(162) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(ok(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  SND(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > SND1

The following usable rules [FROCOS05] were oriented: none

(163) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(164) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > SND1

The following usable rules [FROCOS05] were oriented: none

(165) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(166) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(167) TRUE

(168) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(169) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > U11^13

The following usable rules [FROCOS05] were oriented: none

(170) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(171) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U11^13

The following usable rules [FROCOS05] were oriented: none

(172) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(173) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(174) TRUE

(175) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(176) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SPLITAT1

The following usable rules [FROCOS05] were oriented: none

(177) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(178) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
mark1 > SPLITAT2

The following usable rules [FROCOS05] were oriented: none

(179) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(180) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(ok(X1), ok(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  x2
ok(x1)  =  ok(x1)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(181) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(182) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(183) TRUE

(184) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(ok(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(185) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(ok(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  FST(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > FST1

The following usable rules [FROCOS05] were oriented: none

(186) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(187) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > FST1

The following usable rules [FROCOS05] were oriented: none

(188) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(189) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(190) TRUE

(191) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(192) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(ok(X1), ok(X2), ok(X3)) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U1011(x1, x2, x3)  =  U1011(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
ok1 > U101^13

The following usable rules [FROCOS05] were oriented: none

(193) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(194) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1011(mark(X1), X2, X3) → U1011(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
mark1 > U101^13

The following usable rules [FROCOS05] were oriented: none

(195) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(196) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(197) TRUE

(198) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(fst(X)) → PROPER(X)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(snd(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(head(X)) → PROPER(X)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(199) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U101(X1, X2, X3)) → PROPER(X2)
PROPER(U101(X1, X2, X3)) → PROPER(X1)
PROPER(U101(X1, X2, X3)) → PROPER(X3)
PROPER(splitAt(X1, X2)) → PROPER(X1)
PROPER(splitAt(X1, X2)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2)) → PROPER(X1)
PROPER(U41(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X1)
PROPER(U51(X1, X2, X3)) → PROPER(X2)
PROPER(U51(X1, X2, X3)) → PROPER(X3)
PROPER(afterNth(X1, X2)) → PROPER(X1)
PROPER(afterNth(X1, X2)) → PROPER(X2)
PROPER(U61(X1, X2)) → PROPER(X1)
PROPER(U61(X1, X2)) → PROPER(X2)
PROPER(U71(X1, X2)) → PROPER(X1)
PROPER(U71(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X1)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X2)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X3)
PROPER(U81(X1, X2, X3, X4)) → PROPER(X4)
PROPER(U82(X1, X2)) → PROPER(X1)
PROPER(U82(X1, X2)) → PROPER(X2)
PROPER(U91(X1, X2)) → PROPER(X1)
PROPER(U91(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isPLNat(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U101(x1, x2, x3)  =  U101(x1, x2, x3)
fst(x1)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  U71(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
isPLNat(x1)  =  isPLNat(x1)
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)

Recursive Path Order [RPO].
Precedence:
trivial

The following usable rules [FROCOS05] were oriented: none

(200) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(fst(X)) → PROPER(X)
PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(201) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(fst(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
fst(x1)  =  fst(x1)
snd(x1)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
fst1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(202) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(snd(X)) → PROPER(X)
PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(203) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(snd(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
snd(x1)  =  snd(x1)
natsFrom(x1)  =  x1
s(x1)  =  x1
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
snd1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(204) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(natsFrom(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(205) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(natsFrom(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
natsFrom1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(206) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(207) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
head(x1)  =  x1
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
s1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(208) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(head(X)) → PROPER(X)
PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(209) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
head(x1)  =  head(x1)
isNatural(x1)  =  x1
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
head1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(210) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNatural(X)) → PROPER(X)
PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(211) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatural(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNatural(x1)  =  isNatural(x1)
isLNat(x1)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
isNatural1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(212) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isLNat(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(213) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isLNat(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isLNat(x1)  =  isLNat(x1)
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
isLNat1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(214) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(215) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
tail1 > PROPER1

The following usable rules [FROCOS05] were oriented: none

(216) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(217) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(218) TRUE

(219) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(220) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(splitAt(X1, X2)) → ACTIVE(X1)
ACTIVE(splitAt(X1, X2)) → ACTIVE(X2)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X1)
ACTIVE(afterNth(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
fst(x1)  =  x1
U101(x1, x2, x3)  =  x1
splitAt(x1, x2)  =  splitAt(x1, x2)
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
afterNth(x1, x2)  =  afterNth(x1, x2)
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
pair(x1, x2)  =  pair(x1, x2)
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)

Recursive Path Order [RPO].
Precedence:
splitAt2 > ACTIVE1
pair2 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(221) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fst(X)) → ACTIVE(X)
ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(222) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(fst(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
fst(x1)  =  fst(x1)
U101(x1, x2, x3)  =  x1
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
fst1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(223) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(224) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U101(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
U11(x1, x2, x3)  =  x1
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U1013 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(225) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(226) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
snd(x1)  =  x1
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U113 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(227) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(snd(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(228) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(snd(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
snd(x1)  =  snd(x1)
U21(x1, x2)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
snd1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(229) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(230) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U21(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U21(x1, x2)  =  U21(x1, x2)
U31(x1, x2)  =  x1
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U212 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(231) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(232) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U31(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2)  =  x1
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U312 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(233) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U41(X1, X2)) → ACTIVE(X1)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(234) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U41(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U41(x1, x2)  =  U41(x1, x2)
cons(x1, x2)  =  x1
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U412 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(235) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(236) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  cons(x1, x2)
natsFrom(x1)  =  x1
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
cons2 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(237) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(natsFrom(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(238) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(natsFrom(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
natsFrom(x1)  =  natsFrom(x1)
s(x1)  =  x1
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
natsFrom1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(239) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(240) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
U51(x1, x2, x3)  =  x1
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
s1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(241) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(242) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U51(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
head(x1)  =  x1
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U513 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(243) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(244) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
head(x1)  =  head(x1)
U61(x1, x2)  =  x1
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
head1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(245) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U61(X1, X2)) → ACTIVE(X1)
ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(246) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U61(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U61(x1, x2)  =  U61(x1, x2)
U71(x1, x2)  =  x1
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U612 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(247) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U71(X1, X2)) → ACTIVE(X1)
ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(248) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U71(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U71(x1, x2)  =  U71(x1, x2)
U81(x1, x2, x3, x4)  =  x1
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U712 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(249) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(250) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U81(X1, X2, X3, X4)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U81(x1, x2, x3, x4)  =  U81(x1, x2, x3, x4)
U82(x1, x2)  =  x1
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U814 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(251) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U82(X1, X2)) → ACTIVE(X1)
ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(252) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U82(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U82(x1, x2)  =  U82(x1, x2)
U91(x1, x2)  =  x1
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U822 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(253) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U91(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(254) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U91(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U91(x1, x2)  =  U91(x1, x2)
and(x1, x2)  =  x1
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
U912 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(255) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(and(X1, X2)) → ACTIVE(X1)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(256) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
and(x1, x2)  =  and(x1, x2)
tail(x1)  =  x1

Recursive Path Order [RPO].
Precedence:
and2 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(257) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(258) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive Path Order [RPO].
Precedence:
tail1 > ACTIVE1

The following usable rules [FROCOS05] were oriented: none

(259) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(260) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(261) TRUE

(262) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U101(tt, N, XS)) → mark(fst(splitAt(N, XS)))
active(U11(tt, N, XS)) → mark(snd(splitAt(N, XS)))
active(U21(tt, X)) → mark(X)
active(U31(tt, N)) → mark(N)
active(U41(tt, N)) → mark(cons(N, natsFrom(s(N))))
active(U51(tt, N, XS)) → mark(head(afterNth(N, XS)))
active(U61(tt, Y)) → mark(Y)
active(U71(tt, XS)) → mark(pair(nil, XS))
active(U81(tt, N, X, XS)) → mark(U82(splitAt(N, XS), X))
active(U82(pair(YS, ZS), X)) → mark(pair(cons(X, YS), ZS))
active(U91(tt, XS)) → mark(XS)
active(afterNth(N, XS)) → mark(U11(and(isNatural(N), isLNat(XS)), N, XS))
active(and(tt, X)) → mark(X)
active(fst(pair(X, Y))) → mark(U21(and(isLNat(X), isLNat(Y)), X))
active(head(cons(N, XS))) → mark(U31(and(isNatural(N), isLNat(XS)), N))
active(isLNat(nil)) → mark(tt)
active(isLNat(afterNth(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(cons(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isLNat(fst(V1))) → mark(isPLNat(V1))
active(isLNat(natsFrom(V1))) → mark(isNatural(V1))
active(isLNat(snd(V1))) → mark(isPLNat(V1))
active(isLNat(tail(V1))) → mark(isLNat(V1))
active(isLNat(take(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isNatural(0)) → mark(tt)
active(isNatural(head(V1))) → mark(isLNat(V1))
active(isNatural(s(V1))) → mark(isNatural(V1))
active(isNatural(sel(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(isPLNat(pair(V1, V2))) → mark(and(isLNat(V1), isLNat(V2)))
active(isPLNat(splitAt(V1, V2))) → mark(and(isNatural(V1), isLNat(V2)))
active(natsFrom(N)) → mark(U41(isNatural(N), N))
active(sel(N, XS)) → mark(U51(and(isNatural(N), isLNat(XS)), N, XS))
active(snd(pair(X, Y))) → mark(U61(and(isLNat(X), isLNat(Y)), Y))
active(splitAt(0, XS)) → mark(U71(isLNat(XS), XS))
active(splitAt(s(N), cons(X, XS))) → mark(U81(and(isNatural(N), and(isNatural(X), isLNat(XS))), N, X, XS))
active(tail(cons(N, XS))) → mark(U91(and(isNatural(N), isLNat(XS)), XS))
active(take(N, XS)) → mark(U101(and(isNatural(N), isLNat(XS)), N, XS))
active(U101(X1, X2, X3)) → U101(active(X1), X2, X3)
active(fst(X)) → fst(active(X))
active(splitAt(X1, X2)) → splitAt(active(X1), X2)
active(splitAt(X1, X2)) → splitAt(X1, active(X2))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(snd(X)) → snd(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2)) → U41(active(X1), X2)
active(cons(X1, X2)) → cons(active(X1), X2)
active(natsFrom(X)) → natsFrom(active(X))
active(s(X)) → s(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(head(X)) → head(active(X))
active(afterNth(X1, X2)) → afterNth(active(X1), X2)
active(afterNth(X1, X2)) → afterNth(X1, active(X2))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U71(X1, X2)) → U71(active(X1), X2)
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(U81(X1, X2, X3, X4)) → U81(active(X1), X2, X3, X4)
active(U82(X1, X2)) → U82(active(X1), X2)
active(U91(X1, X2)) → U91(active(X1), X2)
active(and(X1, X2)) → and(active(X1), X2)
active(tail(X)) → tail(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
U101(mark(X1), X2, X3) → mark(U101(X1, X2, X3))
fst(mark(X)) → mark(fst(X))
splitAt(mark(X1), X2) → mark(splitAt(X1, X2))
splitAt(X1, mark(X2)) → mark(splitAt(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
snd(mark(X)) → mark(snd(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2) → mark(U41(X1, X2))
cons(mark(X1), X2) → mark(cons(X1, X2))
natsFrom(mark(X)) → mark(natsFrom(X))
s(mark(X)) → mark(s(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
head(mark(X)) → mark(head(X))
afterNth(mark(X1), X2) → mark(afterNth(X1, X2))
afterNth(X1, mark(X2)) → mark(afterNth(X1, X2))
U61(mark(X1), X2) → mark(U61(X1, X2))
U71(mark(X1), X2) → mark(U71(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
U81(mark(X1), X2, X3, X4) → mark(U81(X1, X2, X3, X4))
U82(mark(X1), X2) → mark(U82(X1, X2))
U91(mark(X1), X2) → mark(U91(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
tail(mark(X)) → mark(tail(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(U101(X1, X2, X3)) → U101(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(fst(X)) → fst(proper(X))
proper(splitAt(X1, X2)) → splitAt(proper(X1), proper(X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(snd(X)) → snd(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2)) → U41(proper(X1), proper(X2))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(natsFrom(X)) → natsFrom(proper(X))
proper(s(X)) → s(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(head(X)) → head(proper(X))
proper(afterNth(X1, X2)) → afterNth(proper(X1), proper(X2))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U81(X1, X2, X3, X4)) → U81(proper(X1), proper(X2), proper(X3), proper(X4))
proper(U82(X1, X2)) → U82(proper(X1), proper(X2))
proper(U91(X1, X2)) → U91(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isNatural(X)) → isNatural(proper(X))
proper(isLNat(X)) → isLNat(proper(X))
proper(isPLNat(X)) → isPLNat(proper(X))
proper(tail(X)) → tail(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(0) → ok(0)
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
U101(ok(X1), ok(X2), ok(X3)) → ok(U101(X1, X2, X3))
fst(ok(X)) → ok(fst(X))
splitAt(ok(X1), ok(X2)) → ok(splitAt(X1, X2))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
snd(ok(X)) → ok(snd(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2)) → ok(U41(X1, X2))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
natsFrom(ok(X)) → ok(natsFrom(X))
s(ok(X)) → ok(s(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
head(ok(X)) → ok(head(X))
afterNth(ok(X1), ok(X2)) → ok(afterNth(X1, X2))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
U81(ok(X1), ok(X2), ok(X3), ok(X4)) → ok(U81(X1, X2, X3, X4))
U82(ok(X1), ok(X2)) → ok(U82(X1, X2))
U91(ok(X1), ok(X2)) → ok(U91(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatural(ok(X)) → ok(isNatural(X))
isLNat(ok(X)) → ok(isLNat(X))
isPLNat(ok(X)) → ok(isPLNat(X))
tail(ok(X)) → ok(tail(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.