(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U(splitAt(N, XS), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → SPLITAT(N, XS)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → PAIR(cons(X, YS), ZS)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → CONS(X, YS)
ACTIVE(head(cons(N, XS))) → MARK(N)
ACTIVE(tail(cons(N, XS))) → MARK(XS)
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(nil) → ACTIVE(nil)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
MARK(u(X1, X2, X3, X4)) → U(mark(X1), X2, X3, X4)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(active(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 29 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, active(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
TAKE1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(active(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
TAKE1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > TAKE1

Status:
TAKE1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[TAKE2, mark1]

Status:
TAKE2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(15) TRUE

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AFTERNTH1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AFTERNTH1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AFTERNTH(x1, x2)  =  AFTERNTH(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > AFTERNTH1

Status:
AFTERNTH1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[AFTERNTH2, mark1]

Status:
AFTERNTH2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, active(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SEL1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(active(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SEL1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > SEL1

Status:
SEL1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(mark(X1), X2) → SEL(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(mark(X1), X2) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SEL2, mark1]

Status:
SEL2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(active(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(active(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(active(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(active(X1), X2, X3, X4) → U(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U(x1, x2, x3, x4)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U(x1, x2, x3, x4)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U(x1, x2, x3, x4)  =  U(x3, x4)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[U2, mark1, active1]

Status:
U2: [2,1]
mark1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) TRUE

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SPLITAT1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
SPLITAT1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SPLITAT(x1, x2)  =  SPLITAT(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > SPLITAT1

Status:
SPLITAT1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[SPLITAT2, mark1]

Status:
SPLITAT2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(active(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(74) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SND(mark(X)) → SND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SND(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(76) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(78) TRUE

(79) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(80) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, active(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PAIR1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(81) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(82) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(active(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PAIR1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(83) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(84) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > PAIR1

Status:
PAIR1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(85) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(86) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[PAIR2, mark1]

Status:
PAIR2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(87) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(89) TRUE

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(91) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(active(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(92) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(93) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FST(mark(X)) → FST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FST(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(94) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(95) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(96) TRUE

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(99) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(100) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(101) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(102) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(103) TRUE

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
CONS1: multiset
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
mark1 > CONS1

Status:
CONS1: multiset
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[CONS2, mark1]

Status:
CONS2: [2,1]
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(114) TRUE

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(active(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
active1: multiset


The following usable rules [FROCOS05] were oriented: none

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


NATSFROM(mark(X)) → NATSFROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
NATSFROM(x1)  =  x1
mark(x1)  =  mark(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(123) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
natsFrom(x1)  =  natsFrom
ACTIVE(x1)  =  x1
mark(x1)  =  mark(x1)
cons(x1, x2)  =  cons
s(x1)  =  s
fst(x1)  =  fst
pair(x1, x2)  =  pair
snd(x1)  =  snd
splitAt(x1, x2)  =  splitAt
0  =  0
nil  =  nil
u(x1, x2, x3, x4)  =  u
head(x1)  =  head
tail(x1)  =  tail
sel(x1, x2)  =  sel
afterNth(x1, x2)  =  afterNth
take(x1, x2)  =  take
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, natsFrom, mark1, cons, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > 0 > [s, pair, nil]

Status:
MARK: multiset
natsFrom: multiset
mark1: multiset
cons: multiset
s: []
fst: multiset
pair: []
snd: multiset
splitAt: multiset
0: multiset
nil: multiset
u: multiset
head: multiset
tail: multiset
sel: multiset
afterNth: multiset
take: multiset


The following usable rules [FROCOS05] were oriented:

natsFrom(active(X)) → natsFrom(X)
natsFrom(mark(X)) → natsFrom(X)
s(active(X)) → s(X)
s(mark(X)) → s(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
fst(active(X)) → fst(X)
fst(mark(X)) → fst(X)
pair(X1, mark(X2)) → pair(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
snd(active(X)) → snd(X)
snd(mark(X)) → snd(X)
head(active(X)) → head(X)
head(mark(X)) → head(X)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(125) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
natsFrom(x1)  =  natsFrom
ACTIVE(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  s(x1)
fst(x1)  =  fst
pair(x1, x2)  =  pair(x1, x2)
snd(x1)  =  snd
splitAt(x1, x2)  =  splitAt
0  =  0
nil  =  nil
u(x1, x2, x3, x4)  =  u
head(x1)  =  head
tail(x1)  =  tail
sel(x1, x2)  =  sel
afterNth(x1, x2)  =  afterNth
take(x1, x2)  =  take
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, natsFrom, mark, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > cons > [s1, pair2, nil]
[MARK, natsFrom, mark, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > 0 > [s1, pair2, nil]

Status:
MARK: multiset
natsFrom: multiset
mark: multiset
cons: []
s1: multiset
fst: multiset
pair2: multiset
snd: multiset
splitAt: multiset
0: multiset
nil: multiset
u: multiset
head: multiset
tail: multiset
sel: multiset
afterNth: multiset
take: multiset


The following usable rules [FROCOS05] were oriented:

natsFrom(active(X)) → natsFrom(X)
natsFrom(mark(X)) → natsFrom(X)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
fst(active(X)) → fst(X)
fst(mark(X)) → fst(X)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
snd(active(X)) → snd(X)
snd(mark(X)) → snd(X)
head(active(X)) → head(X)
head(mark(X)) → head(X)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
tail(active(X)) → tail(X)
tail(mark(X)) → tail(X)
sel(X1, mark(X2)) → sel(X1, X2)
sel(mark(X1), X2) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.