(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
ACTIVE(natsFrom(N)) → CONS(N, natsFrom(s(N)))
ACTIVE(natsFrom(N)) → NATSFROM(s(N))
ACTIVE(natsFrom(N)) → S(N)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
ACTIVE(splitAt(0, XS)) → PAIR(nil, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
ACTIVE(splitAt(s(N), cons(X, XS))) → U(splitAt(N, XS), N, X, XS)
ACTIVE(splitAt(s(N), cons(X, XS))) → SPLITAT(N, XS)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → PAIR(cons(X, YS), ZS)
ACTIVE(u(pair(YS, ZS), N, X, XS)) → CONS(X, YS)
ACTIVE(head(cons(N, XS))) → MARK(N)
ACTIVE(tail(cons(N, XS))) → MARK(XS)
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
ACTIVE(sel(N, XS)) → HEAD(afterNth(N, XS))
ACTIVE(sel(N, XS)) → AFTERNTH(N, XS)
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
ACTIVE(take(N, XS)) → FST(splitAt(N, XS))
ACTIVE(take(N, XS)) → SPLITAT(N, XS)
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
ACTIVE(afterNth(N, XS)) → SND(splitAt(N, XS))
ACTIVE(afterNth(N, XS)) → SPLITAT(N, XS)
MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
MARK(natsFrom(X)) → NATSFROM(mark(X))
MARK(natsFrom(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
MARK(fst(X)) → FST(mark(X))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
MARK(snd(X)) → SND(mark(X))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
MARK(splitAt(X1, X2)) → SPLITAT(mark(X1), mark(X2))
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(nil) → ACTIVE(nil)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
MARK(u(X1, X2, X3, X4)) → U(mark(X1), X2, X3, X4)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
MARK(head(X)) → HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → AFTERNTH(mark(X1), mark(X2))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
NATSFROM(mark(X)) → NATSFROM(X)
NATSFROM(active(X)) → NATSFROM(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
FST(mark(X)) → FST(X)
FST(active(X)) → FST(X)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
SND(mark(X)) → SND(X)
SND(active(X)) → SND(X)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(active(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)
HEAD(mark(X)) → HEAD(X)
HEAD(active(X)) → HEAD(X)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 14 SCCs with 29 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AFTERNTH(X1, mark(X2)) → AFTERNTH(X1, X2)
AFTERNTH(mark(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(active(X1), X2) → AFTERNTH(X1, X2)
AFTERNTH(X1, active(X2)) → AFTERNTH(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(active(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U(X1, mark(X2), X3, X4) → U(X1, X2, X3, X4)
U(mark(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, mark(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, mark(X4)) → U(X1, X2, X3, X4)
U(active(X1), X2, X3, X4) → U(X1, X2, X3, X4)
U(X1, active(X2), X3, X4) → U(X1, X2, X3, X4)
U(X1, X2, active(X3), X4) → U(X1, X2, X3, X4)
U(X1, X2, X3, active(X4)) → U(X1, X2, X3, X4)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SPLITAT(X1, mark(X2)) → SPLITAT(X1, X2)
SPLITAT(mark(X1), X2) → SPLITAT(X1, X2)
SPLITAT(active(X1), X2) → SPLITAT(X1, X2)
SPLITAT(X1, active(X2)) → SPLITAT(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SND(active(X)) → SND(X)
SND(mark(X)) → SND(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FST(active(X)) → FST(X)
FST(mark(X)) → FST(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

NATSFROM(active(X)) → NATSFROM(X)
NATSFROM(mark(X)) → NATSFROM(X)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
natsFrom(x1)  =  natsFrom
ACTIVE(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  s
fst(x1)  =  fst
pair(x1, x2)  =  pair
snd(x1)  =  snd
splitAt(x1, x2)  =  splitAt
0  =  0
nil  =  nil
u(x1, x2, x3, x4)  =  u
head(x1)  =  head
tail(x1)  =  tail
sel(x1, x2)  =  sel
afterNth(x1, x2)  =  afterNth
take(x1, x2)  =  take
active(x1)  =  active

Lexicographic Path Order [LPO].
Precedence:
[MARK, natsFrom, s, fst, pair, snd, splitAt, u, head, tail, sel, afterNth, take] > cons > [mark, active]
[MARK, natsFrom, s, fst, pair, snd, splitAt, u, head, tail, sel, afterNth, take] > [0, nil] > [mark, active]


The following usable rules [FROCOS05] were oriented:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
natsFrom(x1)  =  natsFrom
ACTIVE(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  s
fst(x1)  =  fst
pair(x1, x2)  =  pair
snd(x1)  =  snd
splitAt(x1, x2)  =  splitAt
0  =  0
nil  =  nil
u(x1, x2, x3, x4)  =  u
head(x1)  =  head
tail(x1)  =  tail
sel(x1, x2)  =  sel
afterNth(x1, x2)  =  afterNth
take(x1, x2)  =  take
active(x1)  =  active

Lexicographic Path Order [LPO].
Precedence:
[MARK, natsFrom, cons, fst, pair, snd, splitAt, nil, u, head, tail, sel, afterNth, take] > [mark, active] > s
[MARK, natsFrom, cons, fst, pair, snd, splitAt, nil, u, head, tail, sel, afterNth, take] > [mark, active] > 0


The following usable rules [FROCOS05] were oriented:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
natsFrom(x1)  =  natsFrom
ACTIVE(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  s
fst(x1)  =  fst
pair(x1, x2)  =  pair
snd(x1)  =  snd
splitAt(x1, x2)  =  splitAt
0  =  0
nil  =  nil
u(x1, x2, x3, x4)  =  u
head(x1)  =  head
tail(x1)  =  tail
sel(x1, x2)  =  sel
afterNth(x1, x2)  =  afterNth
take(x1, x2)  =  take
active(x1)  =  active

Lexicographic Path Order [LPO].
Precedence:
cons > [mark, active] > s > [MARK, natsFrom, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > pair
cons > [mark, active] > 0 > [MARK, natsFrom, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > pair
nil > [mark, active] > s > [MARK, natsFrom, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > pair
nil > [mark, active] > 0 > [MARK, natsFrom, fst, snd, splitAt, u, head, tail, sel, afterNth, take] > pair


The following usable rules [FROCOS05] were oriented:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(natsFrom(X)) → ACTIVE(natsFrom(mark(X)))
ACTIVE(natsFrom(N)) → MARK(cons(N, natsFrom(s(N))))
MARK(natsFrom(X)) → MARK(X)
ACTIVE(fst(pair(XS, YS))) → MARK(XS)
MARK(cons(X1, X2)) → MARK(X1)
ACTIVE(snd(pair(XS, YS))) → MARK(YS)
MARK(s(X)) → MARK(X)
MARK(fst(X)) → ACTIVE(fst(mark(X)))
ACTIVE(splitAt(0, XS)) → MARK(pair(nil, XS))
MARK(fst(X)) → MARK(X)
ACTIVE(splitAt(s(N), cons(X, XS))) → MARK(u(splitAt(N, XS), N, X, XS))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(snd(X)) → ACTIVE(snd(mark(X)))
ACTIVE(u(pair(YS, ZS), N, X, XS)) → MARK(pair(cons(X, YS), ZS))
MARK(snd(X)) → MARK(X)
MARK(splitAt(X1, X2)) → ACTIVE(splitAt(mark(X1), mark(X2)))
ACTIVE(head(cons(N, XS))) → MARK(N)
MARK(splitAt(X1, X2)) → MARK(X1)
MARK(splitAt(X1, X2)) → MARK(X2)
MARK(u(X1, X2, X3, X4)) → ACTIVE(u(mark(X1), X2, X3, X4))
ACTIVE(tail(cons(N, XS))) → MARK(XS)
MARK(u(X1, X2, X3, X4)) → MARK(X1)
MARK(head(X)) → ACTIVE(head(mark(X)))
ACTIVE(sel(N, XS)) → MARK(head(afterNth(N, XS)))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
ACTIVE(take(N, XS)) → MARK(fst(splitAt(N, XS)))
MARK(tail(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(afterNth(N, XS)) → MARK(snd(splitAt(N, XS)))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(afterNth(X1, X2)) → ACTIVE(afterNth(mark(X1), mark(X2)))
MARK(afterNth(X1, X2)) → MARK(X1)
MARK(afterNth(X1, X2)) → MARK(X2)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(natsFrom(N)) → mark(cons(N, natsFrom(s(N))))
active(fst(pair(XS, YS))) → mark(XS)
active(snd(pair(XS, YS))) → mark(YS)
active(splitAt(0, XS)) → mark(pair(nil, XS))
active(splitAt(s(N), cons(X, XS))) → mark(u(splitAt(N, XS), N, X, XS))
active(u(pair(YS, ZS), N, X, XS)) → mark(pair(cons(X, YS), ZS))
active(head(cons(N, XS))) → mark(N)
active(tail(cons(N, XS))) → mark(XS)
active(sel(N, XS)) → mark(head(afterNth(N, XS)))
active(take(N, XS)) → mark(fst(splitAt(N, XS)))
active(afterNth(N, XS)) → mark(snd(splitAt(N, XS)))
mark(natsFrom(X)) → active(natsFrom(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(fst(X)) → active(fst(mark(X)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(snd(X)) → active(snd(mark(X)))
mark(splitAt(X1, X2)) → active(splitAt(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(u(X1, X2, X3, X4)) → active(u(mark(X1), X2, X3, X4))
mark(head(X)) → active(head(mark(X)))
mark(tail(X)) → active(tail(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(afterNth(X1, X2)) → active(afterNth(mark(X1), mark(X2)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
natsFrom(mark(X)) → natsFrom(X)
natsFrom(active(X)) → natsFrom(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
fst(mark(X)) → fst(X)
fst(active(X)) → fst(X)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
snd(mark(X)) → snd(X)
snd(active(X)) → snd(X)
splitAt(mark(X1), X2) → splitAt(X1, X2)
splitAt(X1, mark(X2)) → splitAt(X1, X2)
splitAt(active(X1), X2) → splitAt(X1, X2)
splitAt(X1, active(X2)) → splitAt(X1, X2)
u(mark(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, mark(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, mark(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, mark(X4)) → u(X1, X2, X3, X4)
u(active(X1), X2, X3, X4) → u(X1, X2, X3, X4)
u(X1, active(X2), X3, X4) → u(X1, X2, X3, X4)
u(X1, X2, active(X3), X4) → u(X1, X2, X3, X4)
u(X1, X2, X3, active(X4)) → u(X1, X2, X3, X4)
head(mark(X)) → head(X)
head(active(X)) → head(X)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
afterNth(mark(X1), X2) → afterNth(X1, X2)
afterNth(X1, mark(X2)) → afterNth(X1, X2)
afterNth(active(X1), X2) → afterNth(X1, X2)
afterNth(X1, active(X2)) → afterNth(X1, X2)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.