0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 PisEmptyProof (⇔)
↳8 TRUE
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
SPLITAT(s(N), cons(X, XS)) → U(splitAt(N, activate(XS)), N, X, activate(XS))
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
SPLITAT(s(N), cons(X, XS)) → ACTIVATE(XS)
U(pair(YS, ZS), N, X, XS) → ACTIVATE(X)
TAIL(cons(N, XS)) → ACTIVATE(XS)
SEL(N, XS) → HEAD(afterNth(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
TAKE(N, XS) → FST(splitAt(N, XS))
TAKE(N, XS) → SPLITAT(N, XS)
AFTERNTH(N, XS) → SND(splitAt(N, XS))
AFTERNTH(N, XS) → SPLITAT(N, XS)
ACTIVATE(n__natsFrom(X)) → NATSFROM(X)
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SPLITAT(s(N), cons(X, XS)) → SPLITAT(N, activate(XS))
SPLITAT1 > activate1 > natsFrom1 > cons2 > s1
0 > pair2 > s1
0 > nil > s1
tail1 > activate1 > natsFrom1 > cons2 > s1
sel2 > afterNth2 > splitAt2 > nil > s1
sel2 > afterNth2 > splitAt2 > u3 > activate1 > natsFrom1 > cons2 > s1
sel2 > afterNth2 > splitAt2 > u3 > pair2 > s1
take2 > fst1 > s1
take2 > splitAt2 > nil > s1
take2 > splitAt2 > u3 > activate1 > natsFrom1 > cons2 > s1
take2 > splitAt2 > u3 > pair2 > s1
SPLITAT1: [1]
s1: multiset
cons2: multiset
activate1: multiset
natsFrom1: multiset
fst1: multiset
pair2: multiset
splitAt2: [1,2]
0: multiset
nil: multiset
u3: multiset
tail1: multiset
sel2: multiset
afterNth2: multiset
take2: multiset
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
natsFrom(N) → cons(N, n__natsFrom(s(N)))
fst(pair(XS, YS)) → XS
snd(pair(XS, YS)) → YS
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → u(splitAt(N, activate(XS)), N, X, activate(XS))
u(pair(YS, ZS), N, X, XS) → pair(cons(activate(X), YS), ZS)
head(cons(N, XS)) → N
tail(cons(N, XS)) → activate(XS)
sel(N, XS) → head(afterNth(N, XS))
take(N, XS) → fst(splitAt(N, XS))
afterNth(N, XS) → snd(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X