(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
terms(X) → n__terms(X)
first(X1, X2) → n__first(X1, X2)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic Path Order [LPO].
Precedence:
[first2, nfirst2] > nil > s1
[first2, nfirst2] > activate1 > terms1 > cons2 > s1
[first2, nfirst2] > activate1 > terms1 > recip1 > s1
[first2, nfirst2] > activate1 > terms1 > [sqr1, dbl1] > add2 > s1
[first2, nfirst2] > activate1 > terms1 > nterms1 > s1
half1 > 0 > nil > s1
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
terms(N) → cons(recip(sqr(N)), n__terms(s(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
terms(X) → n__terms(X)
activate(n__terms(X)) → terms(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
first(X1, X2) → n__first(X1, X2)
Q is empty.
(3) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Lexicographic Path Order [LPO].
Precedence:
first2 > nfirst2
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
first(X1, X2) → n__first(X1, X2)
(4) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(5) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(6) TRUE