(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
ACTIVE(f(0)) → CONS(0, f(s(0)))
ACTIVE(f(0)) → F(s(0))
ACTIVE(f(0)) → S(0)
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
ACTIVE(f(s(0))) → F(p(s(0)))
ACTIVE(f(s(0))) → P(s(0))
ACTIVE(p(s(X))) → MARK(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(0) → ACTIVE(0)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → P(mark(X))
MARK(p(X)) → MARK(X)
F(mark(X)) → F(X)
F(active(X)) → F(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
P(mark(X)) → P(X)
P(active(X)) → P(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 10 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P(active(X)) → P(X)
P(mark(X)) → P(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → MARK(X)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(p(s(X))) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
ACTIVE(x1)  =  x1
cons(x1, x2)  =  cons
f(x1)  =  f
s(x1)  =  s
p(x1)  =  p
active(x1)  =  active
mark(x1)  =  mark
0  =  0

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK, f, p] > cons
[MARK, f, p] > s
[active, mark]

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → MARK(X)
ACTIVE(p(s(X))) → MARK(X)
MARK(s(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(p(s(X))) → MARK(X)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
f(x1)  =  x1
0  =  0
MARK(x1)  =  x1
cons(x1, x2)  =  x1
mark(x1)  =  x1
s(x1)  =  s(x1)
p(x1)  =  x1
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → MARK(X)
MARK(p(X)) → ACTIVE(p(mark(X)))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(p(X)) → ACTIVE(p(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
f(x1)  =  f
MARK(x1)  =  MARK
p(x1)  =  p
active(x1)  =  active
mark(x1)  =  mark
cons(x1, x2)  =  cons
0  =  0
s(x1)  =  s

Lexicographic path order with status [LPO].
Quasi-Precedence:
[f, MARK] > p
[active, mark]

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → MARK(X)
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(0)) → MARK(cons(0, f(s(0))))
MARK(f(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
f(x1)  =  f(x1)
0  =  0
MARK(x1)  =  x1
cons(x1, x2)  =  x1
mark(x1)  =  x1
s(x1)  =  x1
p(x1)  =  x1
active(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)
MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(19) Complex Obligation (AND)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(s(0))) → MARK(f(p(s(0))))
MARK(f(X)) → ACTIVE(f(mark(X)))

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
p(x1)  =  x1
cons(x1, x2)  =  cons(x1)
active(x1)  =  x1
f(x1)  =  f
0  =  0
mark(x1)  =  x1
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
f > cons1
f > 0

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(p(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(p(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
p(x1)  =  p(x1)
active(x1)  =  x1
f(x1)  =  f
0  =  0
mark(x1)  =  x1
cons(x1, x2)  =  cons
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
f > cons

Status:
trivial


The following usable rules [FROCOS05] were oriented:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(0)) → mark(cons(0, f(s(0))))
active(f(s(0))) → mark(f(p(s(0))))
active(p(s(X))) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(s(X)) → active(s(mark(X)))
mark(p(X)) → active(p(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
p(mark(X)) → p(X)
p(active(X)) → p(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE