0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
A__F(s(0)) → A__F(a__p(s(0)))
A__F(s(0)) → A__P(s(0))
A__P(s(X)) → MARK(X)
MARK(f(X)) → A__F(mark(X))
MARK(f(X)) → MARK(X)
MARK(p(X)) → A__P(mark(X))
MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__P(s(X)) → MARK(X)
MARK(s(X)) → MARK(X)
[s1, 0] > [AF1, AP1, MARK1]
AF1: multiset
s1: multiset
0: multiset
AP1: multiset
MARK1: multiset
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
A__F(s(0)) → A__F(a__p(s(0)))
A__F(s(0)) → A__P(s(0))
MARK(f(X)) → A__F(mark(X))
MARK(f(X)) → MARK(X)
MARK(p(X)) → A__P(mark(X))
MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
A__F(s(0)) → A__F(a__p(s(0)))
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
MARK(p(X)) → MARK(X)
MARK(f(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(f(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
0 > [MARK1, f1, cons1, af1]
MARK1: multiset
f1: multiset
cons1: multiset
af1: multiset
0: multiset
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
MARK(p(X)) → MARK(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(p(X)) → MARK(X)
[p1, af, ap1, mark1] > [0, cons1, f]
p1: multiset
af: multiset
0: multiset
cons1: multiset
f: multiset
ap1: multiset
mark1: multiset
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)