0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 DependencyGraphProof (⇔)
↳11 QDP
↳12 QDPOrderProof (⇔)
↳13 QDP
↳14 PisEmptyProof (⇔)
↳15 TRUE
↳16 QDP
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
A__F(s(0)) → A__F(a__p(s(0)))
A__F(s(0)) → A__P(s(0))
A__P(s(X)) → MARK(X)
MARK(f(X)) → A__F(mark(X))
MARK(f(X)) → MARK(X)
MARK(p(X)) → A__P(mark(X))
MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(f(X)) → A__F(mark(X))
MARK(f(X)) → MARK(X)
[AF, 0, f1, af1]
f1: [1]
af1: [1]
AF: []
0: []
a__f(X) → f(X)
a__p(X) → p(X)
mark(p(X)) → a__p(mark(X))
a__p(s(X)) → mark(X)
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(f(X)) → a__f(mark(X))
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
A__F(s(0)) → A__F(a__p(s(0)))
A__F(s(0)) → A__P(s(0))
A__P(s(X)) → MARK(X)
MARK(p(X)) → A__P(mark(X))
MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
MARK(p(X)) → A__P(mark(X))
A__P(s(X)) → MARK(X)
MARK(p(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(p(X)) → A__P(mark(X))
MARK(p(X)) → MARK(X)
MARK(s(X)) → MARK(X)
[p1, mark1, ap1] > [af, f] > [MARK1, s1, 0]
MARK1: [1]
f: []
af: []
ap1: [1]
mark1: [1]
s1: [1]
p1: [1]
0: []
a__f(X) → f(X)
a__p(X) → p(X)
mark(p(X)) → a__p(mark(X))
a__p(s(X)) → mark(X)
mark(0) → 0
mark(f(X)) → a__f(mark(X))
a__f(0) → cons(0, f(s(0)))
mark(cons(X1, X2)) → cons(mark(X1), X2)
a__f(s(0)) → a__f(a__p(s(0)))
mark(s(X)) → s(mark(X))
A__P(s(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
MARK(cons(X1, X2)) → MARK(X1)
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(cons(X1, X2)) → MARK(X1)
trivial
cons2: [2,1]
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)
A__F(s(0)) → A__F(a__p(s(0)))
a__f(0) → cons(0, f(s(0)))
a__f(s(0)) → a__f(a__p(s(0)))
a__p(s(X)) → mark(X)
mark(f(X)) → a__f(mark(X))
mark(p(X)) → a__p(mark(X))
mark(0) → 0
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
a__f(X) → f(X)
a__p(X) → p(X)