(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(nats) → ADX(zeros)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) → CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) → S(X)
ACTIVE(incr(cons(X, Y))) → INCR(Y)
ACTIVE(adx(cons(X, Y))) → INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) → CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) → ADX(Y)
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(hd(X)) → HD(active(X))
ACTIVE(hd(X)) → ACTIVE(X)
ACTIVE(tl(X)) → TL(active(X))
ACTIVE(tl(X)) → ACTIVE(X)
ADX(mark(X)) → ADX(X)
INCR(mark(X)) → INCR(X)
HD(mark(X)) → HD(X)
TL(mark(X)) → TL(X)
PROPER(adx(X)) → ADX(proper(X))
PROPER(adx(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → HD(proper(X))
PROPER(hd(X)) → PROPER(X)
PROPER(tl(X)) → TL(proper(X))
PROPER(tl(X)) → PROPER(X)
ADX(ok(X)) → ADX(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
INCR(ok(X)) → INCR(X)
S(ok(X)) → S(X)
HD(ok(X)) → HD(X)
TL(ok(X)) → TL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 20 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[ok1, proper1] > S1 > [mark, zeros, 0, top]
[ok1, proper1] > active1 > [mark, zeros, 0, top]
[ok1, proper1] > nats > [mark, zeros, 0, top]

Status:
S1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  cons(x1)
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
CONS1 > [ok1, mark, zeros, cons1, 0, top]
active1 > [ok1, mark, zeros, cons1, 0, top]
proper1 > nats > [ok1, mark, zeros, cons1, 0, top]

Status:
CONS1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
cons1: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TL(ok(X)) → TL(X)
TL(mark(X)) → TL(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TL(mark(X)) → TL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TL(x1)  =  TL(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
nats  =  nats
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  tl(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [TL1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
[nats, zeros] > 0 > [TL1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
proper1 > [TL1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]

Status:
TL1: multiset
mark1: multiset
active1: multiset
nats: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
incr1: multiset
s1: multiset
hd1: multiset
tl1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TL(ok(X)) → TL(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TL(ok(X)) → TL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TL(x1)  =  TL(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[ok1, proper1] > TL1 > [mark, zeros, 0, top]
[ok1, proper1] > active1 > [mark, zeros, 0, top]
[ok1, proper1] > nats > [mark, zeros, 0, top]

Status:
TL1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HD(ok(X)) → HD(X)
HD(mark(X)) → HD(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HD(mark(X)) → HD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HD(x1)  =  HD(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
nats  =  nats
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  tl(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [HD1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
[nats, zeros] > 0 > [HD1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
proper1 > [HD1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]

Status:
HD1: multiset
mark1: multiset
active1: multiset
nats: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
incr1: multiset
s1: multiset
hd1: multiset
tl1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HD(ok(X)) → HD(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HD(ok(X)) → HD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HD(x1)  =  HD(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[ok1, proper1] > HD1 > [mark, zeros, 0, top]
[ok1, proper1] > active1 > [mark, zeros, 0, top]
[ok1, proper1] > nats > [mark, zeros, 0, top]

Status:
HD1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(mark(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
nats  =  nats
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  tl(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [INCR1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
[nats, zeros] > 0 > [INCR1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
proper1 > [INCR1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]

Status:
INCR1: multiset
mark1: multiset
active1: multiset
nats: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
incr1: multiset
s1: multiset
hd1: multiset
tl1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(ok(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[ok1, proper1] > INCR1 > [mark, zeros, 0, top]
[ok1, proper1] > active1 > [mark, zeros, 0, top]
[ok1, proper1] > nats > [mark, zeros, 0, top]

Status:
INCR1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(35) TRUE

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(mark(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
nats  =  nats
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  tl(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [ADX1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
[nats, zeros] > 0 > [ADX1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]
proper1 > [ADX1, mark1, adx1, cons2, incr1, s1, hd1, tl1, top]

Status:
ADX1: multiset
mark1: multiset
active1: multiset
nats: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
incr1: multiset
s1: multiset
hd1: multiset
tl1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(ok(X)) → ADX(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(ok(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  x1
zeros  =  zeros
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[ok1, proper1] > ADX1 > [mark, zeros, 0, top]
[ok1, proper1] > active1 > [mark, zeros, 0, top]
[ok1, proper1] > nats > [mark, zeros, 0, top]

Status:
ADX1: [1]
ok1: multiset
active1: multiset
nats: multiset
mark: multiset
zeros: multiset
0: multiset
proper1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(adx(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → PROPER(X)
PROPER(tl(X)) → PROPER(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(adx(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
adx(x1)  =  adx(x1)
incr(x1)  =  x1
s(x1)  =  x1
hd(x1)  =  x1
tl(x1)  =  x1
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark(x1)
zeros  =  zeros
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [PROPER1, cons2, adx1, mark1, ok, top]
[nats, zeros] > 0 > [PROPER1, cons2, adx1, mark1, ok, top]
proper1 > [PROPER1, cons2, adx1, mark1, ok, top]

Status:
PROPER1: multiset
cons2: multiset
adx1: multiset
active1: multiset
nats: multiset
mark1: multiset
zeros: multiset
0: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → PROPER(X)
PROPER(tl(X)) → PROPER(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  x1
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark(x1)
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [PROPER1, incr1, s1, hd1, mark1, adx1, cons2, ok, top]
[nats, zeros] > 0 > [PROPER1, incr1, s1, hd1, mark1, adx1, cons2, ok, top]
proper1 > [PROPER1, incr1, s1, hd1, mark1, adx1, cons2, ok, top]

Status:
PROPER1: multiset
incr1: multiset
s1: multiset
hd1: multiset
active1: multiset
nats: multiset
mark1: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(tl(X)) → PROPER(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(tl(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
tl(x1)  =  tl(x1)
active(x1)  =  x1
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  x1
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[nats, zeros] > 0 > [PROPER1, tl1, mark, adx1, cons2, s1, hd1, ok, top]

Status:
PROPER1: [1]
tl1: multiset
nats: multiset
mark: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
s1: multiset
hd1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(hd(X)) → ACTIVE(X)
ACTIVE(tl(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(hd(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
incr(x1)  =  incr(x1)
adx(x1)  =  adx(x1)
hd(x1)  =  hd(x1)
tl(x1)  =  x1
active(x1)  =  active(x1)
nats  =  nats
mark(x1)  =  mark(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
s(x1)  =  s(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > [ACTIVE1, incr1, adx1, hd1, mark1, cons2, s1, ok, top]
[nats, zeros] > 0 > [ACTIVE1, incr1, adx1, hd1, mark1, cons2, s1, ok, top]
proper1 > [ACTIVE1, incr1, adx1, hd1, mark1, cons2, s1, ok, top]

Status:
ACTIVE1: multiset
incr1: multiset
adx1: multiset
hd1: multiset
active1: multiset
nats: multiset
mark1: multiset
zeros: multiset
cons2: multiset
0: multiset
s1: multiset
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(tl(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tl(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
tl(x1)  =  tl(x1)
active(x1)  =  x1
nats  =  nats
mark(x1)  =  mark
adx(x1)  =  adx(x1)
zeros  =  zeros
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  x1
s(x1)  =  s(x1)
hd(x1)  =  hd(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[nats, zeros] > 0 > [ACTIVE1, tl1, mark, adx1, cons2, s1, hd1, ok, top]

Status:
ACTIVE1: [1]
tl1: multiset
nats: multiset
mark: multiset
adx1: multiset
zeros: multiset
cons2: multiset
0: multiset
s1: multiset
hd1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.