(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(nats) → ADX(zeros)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(incr(cons(X, Y))) → CONS(s(X), incr(Y))
ACTIVE(incr(cons(X, Y))) → S(X)
ACTIVE(incr(cons(X, Y))) → INCR(Y)
ACTIVE(adx(cons(X, Y))) → INCR(cons(X, adx(Y)))
ACTIVE(adx(cons(X, Y))) → CONS(X, adx(Y))
ACTIVE(adx(cons(X, Y))) → ADX(Y)
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(hd(X)) → HD(active(X))
ACTIVE(hd(X)) → ACTIVE(X)
ACTIVE(tl(X)) → TL(active(X))
ACTIVE(tl(X)) → ACTIVE(X)
ADX(mark(X)) → ADX(X)
INCR(mark(X)) → INCR(X)
HD(mark(X)) → HD(X)
TL(mark(X)) → TL(X)
PROPER(adx(X)) → ADX(proper(X))
PROPER(adx(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → HD(proper(X))
PROPER(hd(X)) → PROPER(X)
PROPER(tl(X)) → TL(proper(X))
PROPER(tl(X)) → PROPER(X)
ADX(ok(X)) → ADX(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
INCR(ok(X)) → INCR(X)
S(ok(X)) → S(X)
HD(ok(X)) → HD(X)
TL(ok(X)) → TL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 20 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S(ok(X)) → S(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TL(ok(X)) → TL(X)
TL(mark(X)) → TL(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
HD(ok(X)) → HD(X)
HD(mark(X)) → HD(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(adx(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(hd(X)) → PROPER(X)
PROPER(tl(X)) → PROPER(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(hd(X)) → ACTIVE(X)
ACTIVE(tl(X)) → ACTIVE(X)
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))
The TRS R consists of the following rules:
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.