(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) QTRSToCSRProof (EQUIVALENT transformation)

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(incr(cons(X, Y))) → mark(cons(s(X), incr(Y)))
active(adx(cons(X, Y))) → mark(incr(cons(X, adx(Y))))
active(hd(cons(X, Y))) → mark(X)
active(tl(cons(X, Y))) → mark(Y)
active(adx(X)) → adx(active(X))
active(incr(X)) → incr(active(X))
active(hd(X)) → hd(active(X))
active(tl(X)) → tl(active(X))
adx(mark(X)) → mark(adx(X))
incr(mark(X)) → mark(incr(X))
hd(mark(X)) → mark(hd(X))
tl(mark(X)) → mark(tl(X))
proper(nats) → ok(nats)
proper(adx(X)) → adx(proper(X))
proper(zeros) → ok(zeros)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(s(X)) → s(proper(X))
proper(hd(X)) → hd(proper(X))
proper(tl(X)) → tl(proper(X))
adx(ok(X)) → ok(adx(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
hd(ok(X)) → ok(hd(X))
tl(ok(X)) → ok(tl(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
Special symbols used for the transformation (see [GM04]):
top: top, active: active, mark: mark, ok: ok, proper: proper
The replacement map contains the following entries:

nats: empty set
adx: {1}
zeros: empty set
cons: empty set
0: empty set
incr: {1}
s: empty set
hd: {1}
tl: {1}
The QTRS contained all rules created by the complete Giesl-Middeldorp transformation. Therefore, the inverse transformation is complete (and sound).

(2) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

natsadx(zeros)
zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
hd(cons(X, Y)) → X
tl(cons(X, Y)) → Y

The replacement map contains the following entries:

nats: empty set
adx: {1}
zeros: empty set
cons: empty set
0: empty set
incr: {1}
s: empty set
hd: {1}
tl: {1}

(3) PoloCSRProof (EQUIVALENT transformation)

The following rules can be removed because they are oriented strictly by a µ-monotonic polynomial ordering:

natsadx(zeros)
hd(cons(X, Y)) → X
Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(hd(x1)) = 2 + 2·x1   
POL(incr(x1)) = x1   
POL(nats) = 2   
POL(s(x1)) = 0   
POL(tl(x1)) = x1   
POL(zeros) = 0   


(4) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
tl(cons(X, Y)) → Y

The replacement map contains the following entries:

adx: {1}
zeros: empty set
cons: empty set
0: empty set
incr: {1}
s: empty set
tl: {1}

(5) PoloCSRProof (EQUIVALENT transformation)

The following rules can be removed because they are oriented strictly by a µ-monotonic polynomial ordering:

tl(cons(X, Y)) → Y
Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 2   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = 2·x2   
POL(incr(x1)) = x1   
POL(s(x1)) = 2 + 2·x1   
POL(tl(x1)) = 2 + x1   
POL(zeros) = 0   


(6) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)
incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))

The replacement map contains the following entries:

adx: {1}
zeros: empty set
cons: empty set
0: empty set
incr: {1}
s: empty set

(7) PoloCSRProof (EQUIVALENT transformation)

The following rules can be removed because they are oriented strictly by a µ-monotonic polynomial ordering:

incr(cons(X, Y)) → cons(s(X), incr(Y))
adx(cons(X, Y)) → incr(cons(X, adx(Y)))
Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 2   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = 2   
POL(incr(x1)) = 1 + x1   
POL(s(x1)) = 1 + 2·x1   
POL(zeros) = 2   


(8) Obligation:

Context-sensitive rewrite system:
The TRS R consists of the following rules:

zeroscons(0, zeros)

The replacement map contains the following entries:

zeros: empty set
cons: empty set
0: empty set

(9) PoloCSRProof (EQUIVALENT transformation)

The following rules can be removed because they are oriented strictly by a µ-monotonic polynomial ordering:

zeroscons(0, zeros)
Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 2   
POL(cons(x1, x2)) = 1   
POL(zeros) = 2   


(10) Obligation:

Context-sensitive rewrite system:
R is empty.

(11) RisEmptyProof (EQUIVALENT transformation)

The CSR R is empty. Hence, termination is trivially proven.

(12) TRUE