(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ADX(cons(X, L)) → ACTIVATE(L)
NATSADX(zeros)
NATSZEROS
TAIL(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__adx(X)) → ADX(X)
ACTIVATE(n__zeros) → ZEROS

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))
ADX(cons(X, L)) → ACTIVATE(L)

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(cons(X, L)) → ACTIVATE(L)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__incr(x1)  =  x1
INCR(x1)  =  x1
cons(x1, x2)  =  x2
n__adx(x1)  =  n__adx(x1)
ADX(x1)  =  ADX(x1)
activate(x1)  =  x1
incr(x1)  =  x1
nil  =  nil
n__zeros  =  n__zeros
zeros  =  zeros
adx(x1)  =  adx(x1)
0  =  0
s(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[nadx1, ADX1, adx1] > nil
[nzeros, zeros]

Status:
ADX1: [1]
nadx1: [1]
adx1: [1]
zeros: multiset
nzeros: multiset
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented:

incr(nil) → nil
activate(X) → X
activate(n__zeros) → zeros
activate(n__adx(X)) → adx(X)
activate(n__incr(X)) → incr(X)
zerosn__zeros
adx(X) → n__adx(X)
incr(X) → n__incr(X)
zeroscons(0, n__zeros)
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__incr(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__incr(x1)  =  n__incr(x1)
INCR(x1)  =  x1
cons(x1, x2)  =  x2
n__adx(x1)  =  n__adx
ADX(x1)  =  ADX
activate(x1)  =  activate(x1)
incr(x1)  =  x1
nil  =  nil
n__zeros  =  n__zeros
zeros  =  zeros
adx(x1)  =  adx(x1)
0  =  0
s(x1)  =  s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
nincr1 > adx1
[nadx, ADX, activate1] > adx1
nil > adx1
zeros > nzeros > adx1
zeros > 0 > adx1
s1 > adx1

Status:
nincr1: multiset
ADX: multiset
nadx: multiset
adx1: [1]
zeros: multiset
nzeros: multiset
activate1: multiset
s1: multiset
0: multiset
nil: multiset


The following usable rules [FROCOS05] were oriented: none

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, L)) → ACTIVATE(L)
ACTIVATE(n__adx(X)) → ADX(X)
ADX(cons(X, L)) → INCR(cons(X, n__adx(activate(L))))

The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(X)
activate(n__adx(X)) → adx(X)
activate(n__zeros) → zeros
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.