(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__natsa__adx(a__zeros)
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
a__tail(cons(X, L)) → mark(L)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__adx(x1)) = 2·x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 1   
POL(a__tail(x1)) = 1 + x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 2·x1   
POL(cons(x1, x2)) = x1 + 2·x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 1   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + x1   
POL(zeros) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__natsa__adx(a__zeros)
a__tail(cons(X, L)) → mark(L)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(nil) → nil
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(zeros) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__adx(nil) → nil


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
a__head(cons(X, L)) → mark(X)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(5) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(a__adx(x1)) = x1   
POL(a__head(x1)) = 1 + x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = x1   
POL(a__zeros) = 0   
POL(adx(x1)) = x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(zeros) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

a__head(cons(X, L)) → mark(X)


(6) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.

(7) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, L)) → MARK(X)
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
A__ADX(cons(X, L)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
MARK(adx(X)) → MARK(X)
MARK(nats) → A__NATS
MARK(zeros) → A__ZEROS
MARK(head(X)) → A__HEAD(mark(X))
MARK(head(X)) → MARK(X)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, L)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
A__ADX(cons(X, L)) → MARK(X)
MARK(adx(X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(tail(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

A__ADX(cons(X, L)) → MARK(X)
MARK(adx(X)) → MARK(X)
MARK(head(X)) → MARK(X)
MARK(tail(X)) → MARK(X)


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__ADX(x1)) = 1 + x1   
POL(A__INCR(x1)) = x1   
POL(MARK(x1)) = x1   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = 1 + x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = 1 + x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = x1 + x2   
POL(head(x1)) = 1 + x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 1 + x1   
POL(zeros) = 0   

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, L)) → MARK(X)
MARK(incr(X)) → MARK(X)
MARK(adx(X)) → A__ADX(mark(X))
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(adx(X)) → A__ADX(mark(X))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__ADX(x1)) = 1 + x1   
POL(A__INCR(x1)) = x1   
POL(MARK(x1)) = 2·x1   
POL(a__adx(x1)) = 1 + x1   
POL(a__head(x1)) = x1   
POL(a__incr(x1)) = x1   
POL(a__nats) = 0   
POL(a__tail(x1)) = x1   
POL(a__zeros) = 0   
POL(adx(x1)) = 1 + x1   
POL(cons(x1, x2)) = 2·x1 + x2   
POL(head(x1)) = x1   
POL(incr(x1)) = x1   
POL(mark(x1)) = x1   
POL(nats) = 0   
POL(nil) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = x1   
POL(zeros) = 0   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(incr(X)) → A__INCR(mark(X))
A__INCR(cons(X, L)) → MARK(X)
MARK(incr(X)) → MARK(X)
A__ADX(cons(X, L)) → A__INCR(cons(mark(X), adx(L)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, L)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__INCR(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(cons(x1, x2)) =
/0\
\1/
+
/10\
\00/
·x1 +
/00\
\00/
·x2

POL(MARK(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(incr(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(mark(x1)) =
/0\
\0/
+
/10\
\01/
·x1

POL(s(x1)) =
/1\
\0/
+
/10\
\01/
·x1

POL(a__tail(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(tail(x1)) =
/1\
\0/
+
/00\
\00/
·x1

POL(a__nats) =
/0\
\0/

POL(nats) =
/0\
\0/

POL(a__adx(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(adx(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(a__head(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(head(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(a__zeros) =
/0\
\1/

POL(zeros) =
/0\
\1/

POL(0) =
/0\
\0/

POL(a__incr(x1)) =
/0\
\0/
+
/11\
\01/
·x1

POL(nil) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

a__tail(X) → tail(X)
a__natsnats
a__adx(X) → adx(X)
a__head(X) → head(X)
a__zeroszeros
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, L)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(A__INCR(x1)) =
/1\
\0/
+
/01\
\01/
·x1

POL(cons(x1, x2)) =
/0\
\0/
+
/00\
\01/
·x1 +
/00\
\00/
·x2

POL(MARK(x1)) =
/1\
\0/
+
/01\
\01/
·x1

POL(incr(x1)) =
/0\
\1/
+
/00\
\11/
·x1

POL(mark(x1)) =
/0\
\0/
+
/00\
\01/
·x1

POL(a__tail(x1)) =
/0\
\0/
+
/00\
\10/
·x1

POL(tail(x1)) =
/0\
\0/
+
/00\
\10/
·x1

POL(a__nats) =
/0\
\0/

POL(nats) =
/0\
\0/

POL(a__adx(x1)) =
/0\
\1/
+
/00\
\01/
·x1

POL(adx(x1)) =
/0\
\1/
+
/00\
\01/
·x1

POL(a__head(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(head(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(a__zeros) =
/0\
\1/

POL(zeros) =
/0\
\1/

POL(s(x1)) =
/0\
\0/
+
/00\
\01/
·x1

POL(0) =
/0\
\0/

POL(a__incr(x1)) =
/0\
\1/
+
/10\
\11/
·x1

POL(nil) =
/0\
\1/

The following usable rules [FROCOS05] were oriented:

a__tail(X) → tail(X)
a__natsnats
a__adx(X) → adx(X)
a__head(X) → head(X)
a__zeroszeros
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, L)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__incr(nil) → nil
a__incr(cons(X, L)) → cons(s(mark(X)), incr(L))
a__adx(cons(X, L)) → a__incr(cons(mark(X), adx(L)))
a__zeroscons(0, zeros)
mark(incr(X)) → a__incr(mark(X))
mark(adx(X)) → a__adx(mark(X))
mark(nats) → a__nats
mark(zeros) → a__zeros
mark(head(X)) → a__head(mark(X))
mark(tail(X)) → a__tail(mark(X))
mark(nil) → nil
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(s(X)) → s(mark(X))
mark(0) → 0
a__incr(X) → incr(X)
a__adx(X) → adx(X)
a__natsnats
a__zeroszeros
a__head(X) → head(X)
a__tail(X) → tail(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(cons(X1, X2)) → MARK(X1)
    The graph contains the following edges 1 > 1

(26) TRUE