(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, L))) → CONS(s(X), incr(L))
ACTIVE(incr(cons(X, L))) → S(X)
ACTIVE(incr(cons(X, L))) → INCR(L)
ACTIVE(adx(cons(X, L))) → INCR(cons(X, adx(L)))
ACTIVE(adx(cons(X, L))) → CONS(X, adx(L))
ACTIVE(adx(cons(X, L))) → ADX(L)
ACTIVE(nats) → ADX(zeros)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
INCR(mark(X)) → INCR(X)
CONS(mark(X1), X2) → CONS(X1, X2)
S(mark(X)) → S(X)
ADX(mark(X)) → ADX(X)
HEAD(mark(X)) → HEAD(X)
TAIL(mark(X)) → TAIL(X)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → ADX(proper(X))
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
INCR(ok(X)) → INCR(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
S(ok(X)) → S(X)
ADX(ok(X)) → ADX(X)
HEAD(ok(X)) → HEAD(X)
TAIL(ok(X)) → TAIL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 22 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > cons2 > [TAIL1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
active1 > [nats, zeros] > [TAIL1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > cons2 > [TAIL1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > [nats, zeros] > [TAIL1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]

Status:
TAIL1: [1]
ok1: multiset
active1: multiset
incr1: multiset
nil: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, cons2] > s1 > [mark1, incr1, top]
[active1, cons2] > adx1 > nil > [mark1, incr1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, top]
nats > [mark1, incr1, top]

Status:
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > cons2 > [HEAD1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
active1 > [nats, zeros] > [HEAD1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > cons2 > [HEAD1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > [nats, zeros] > [HEAD1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]

Status:
HEAD1: [1]
ok1: multiset
active1: multiset
incr1: multiset
nil: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, cons2] > s1 > [mark1, incr1, top]
[active1, cons2] > adx1 > nil > [mark1, incr1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, top]
nats > [mark1, incr1, top]

Status:
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(ok(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > cons2 > [ADX1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
active1 > [nats, zeros] > [ADX1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > cons2 > [ADX1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > [nats, zeros] > [ADX1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]

Status:
ADX1: [1]
ok1: multiset
active1: multiset
incr1: multiset
nil: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(mark(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, cons2] > s1 > [mark1, incr1, top]
[active1, cons2] > adx1 > nil > [mark1, incr1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, top]
nats > [mark1, incr1, top]

Status:
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > cons2 > [S1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
active1 > [nats, zeros] > [S1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > cons2 > [S1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > [nats, zeros] > [S1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]

Status:
S1: [1]
ok1: multiset
active1: multiset
incr1: multiset
nil: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, cons2] > s1 > [mark1, incr1, top]
[active1, cons2] > adx1 > nil > [mark1, incr1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, top]
nats > [mark1, incr1, top]

Status:
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(32) TRUE

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > [CONS1, ok1, mark, incr1, nil, cons1, s1, adx1, 0, head1, tail1, top]

Status:
CONS1: [1]
ok1: [1]
mark: multiset
active1: multiset
incr1: [1]
nil: multiset
cons1: [1]
s1: [1]
adx1: [1]
nats: multiset
zeros: multiset
0: multiset
head1: [1]
tail1: [1]
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1, x2)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
CONS2 > [mark1, incr1, s1, adx1, head1, tail1, top]
[active1, cons2] > nil > [mark1, incr1, s1, adx1, head1, tail1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, s1, adx1, head1, tail1, top]
nats > [mark1, incr1, s1, adx1, head1, tail1, top]

Status:
CONS2: [1,2]
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
top: []


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(39) TRUE

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(ok(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
active1 > cons2 > [INCR1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
active1 > [nats, zeros] > [INCR1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > cons2 > [INCR1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]
proper1 > [nats, zeros] > [INCR1, ok1, incr1, nil, s1, adx1, 0, head1, tail1, top]

Status:
INCR1: [1]
ok1: multiset
active1: multiset
incr1: multiset
nil: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(mark(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, cons2] > s1 > [mark1, incr1, top]
[active1, cons2] > adx1 > nil > [mark1, incr1, top]
[active1, cons2] > zeros > 0 > [mark1, incr1, top]
nats > [mark1, incr1, top]

Status:
mark1: multiset
active1: [1]
incr1: multiset
nil: multiset
cons2: [1,2]
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(44) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(46) TRUE

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(incr(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  x1
tail(x1)  =  x1
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
nats  =  nats
zeros  =  zeros
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > 0 > [PROPER1, cons2, nil, mark, top]

Status:
PROPER1: [1]
cons2: multiset
active1: [1]
nil: multiset
mark: multiset
nats: multiset
zeros: multiset
0: multiset
proper1: [1]
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  x1
tail(x1)  =  tail(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
nats  =  nats
zeros  =  zeros
0  =  0
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros] > [PROPER1, tail1, nil, mark, cons2, 0, ok, top]

Status:
PROPER1: [1]
tail1: multiset
active1: multiset
nil: multiset
mark: multiset
cons2: multiset
nats: multiset
zeros: multiset
0: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  head(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
nats  =  nats
zeros  =  zeros
0  =  0
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > [PROPER1, head1, nil, mark, cons2, 0, tail1, ok, top]

Status:
PROPER1: [1]
head1: [1]
active1: multiset
nil: multiset
mark: multiset
cons2: [2,1]
nats: multiset
zeros: multiset
0: multiset
tail1: [1]
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(adx(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  adx(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[adx1, active1, nats, zeros, proper1] > [PROPER1, nil, mark, cons2, 0, head1, tail1, ok, top]

Status:
PROPER1: [1]
adx1: multiset
active1: multiset
nil: multiset
mark: multiset
cons2: [2,1]
nats: multiset
zeros: multiset
0: multiset
head1: [1]
tail1: [1]
proper1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
cons1 > [active1, nats, zeros] > [PROPER1, s1, nil, mark, adx1, 0, head1, tail1, ok, top]

Status:
PROPER1: [1]
s1: multiset
active1: multiset
nil: multiset
mark: multiset
cons1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(incr(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  incr(x1)
active(x1)  =  x1
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
PROPER1 > [incr1, nil, mark, cons2, adx1, 0, head1, tail1, ok, top]
s1 > [incr1, nil, mark, cons2, adx1, 0, head1, tail1, ok, top]
[nats, zeros] > [incr1, nil, mark, cons2, adx1, 0, head1, tail1, ok, top]

Status:
PROPER1: [1]
incr1: multiset
nil: multiset
mark: multiset
cons2: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(59) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  x1
tail(x1)  =  tail(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
nats  =  nats
zeros  =  zeros
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > [ACTIVE1, tail1, nil, mark, 0, ok1, top]

Status:
ACTIVE1: [1]
tail1: multiset
active1: multiset
nil: multiset
mark: multiset
nats: multiset
zeros: multiset
0: multiset
proper1: multiset
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  head(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
nats  =  nats
zeros  =  zeros
0  =  0
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > [ACTIVE1, head1, nil, mark, 0, tail1, ok1, top]

Status:
ACTIVE1: [1]
head1: multiset
active1: [1]
nil: multiset
mark: multiset
nats: multiset
zeros: multiset
0: multiset
tail1: multiset
proper1: [1]
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(adx(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  adx(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[adx1, active1, nats, zeros, proper1] > [ACTIVE1, nil, mark, 0, head1, tail1, ok1, top]

Status:
ACTIVE1: [1]
adx1: [1]
active1: [1]
nil: multiset
mark: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: [1]
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
incr(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[active1, nats, zeros, proper1] > [ACTIVE1, s1, nil, mark, adx1, 0, head1, tail1, ok1, top]

Status:
ACTIVE1: multiset
s1: multiset
active1: multiset
nil: multiset
mark: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
incr(x1)  =  incr(x1)
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
[incr1, active1, nats, zeros, proper1] > [ACTIVE1, nil, mark, s1, adx1, 0, head1, tail1, ok1, top]

Status:
ACTIVE1: multiset
incr1: multiset
active1: multiset
nil: multiset
mark: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
proper1: multiset
ok1: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
active(x1)  =  x1
incr(x1)  =  incr(x1)
nil  =  nil
mark(x1)  =  mark
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  tail(x1)
proper(x1)  =  x1
ok(x1)  =  ok
top(x1)  =  top

Recursive path order with status [RPO].
Quasi-Precedence:
cons2 > [incr1, nil, mark, s1, adx1, 0, head1, tail1, ok, top]
[nats, zeros] > [incr1, nil, mark, s1, adx1, 0, head1, tail1, ok, top]

Status:
cons2: multiset
incr1: multiset
nil: multiset
mark: multiset
s1: multiset
adx1: multiset
nats: multiset
zeros: multiset
0: multiset
head1: multiset
tail1: multiset
ok: multiset
top: multiset


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.