(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, L))) → CONS(s(X), incr(L))
ACTIVE(incr(cons(X, L))) → S(X)
ACTIVE(incr(cons(X, L))) → INCR(L)
ACTIVE(adx(cons(X, L))) → INCR(cons(X, adx(L)))
ACTIVE(adx(cons(X, L))) → CONS(X, adx(L))
ACTIVE(adx(cons(X, L))) → ADX(L)
ACTIVE(nats) → ADX(zeros)
ACTIVE(zeros) → CONS(0, zeros)
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ADX(active(X))
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → HEAD(active(X))
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
INCR(mark(X)) → INCR(X)
CONS(mark(X1), X2) → CONS(X1, X2)
S(mark(X)) → S(X)
ADX(mark(X)) → ADX(X)
HEAD(mark(X)) → HEAD(X)
TAIL(mark(X)) → TAIL(X)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → ADX(proper(X))
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → HEAD(proper(X))
PROPER(head(X)) → PROPER(X)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
INCR(ok(X)) → INCR(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
S(ok(X)) → S(X)
ADX(ok(X)) → ADX(X)
HEAD(ok(X)) → HEAD(X)
TAIL(ok(X)) → TAIL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 22 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [active1, cons2] > nil > ok1 > [TAIL1, mark1]
proper1 > [active1, cons2] > s1 > ok1 > [TAIL1, mark1]
proper1 > [active1, cons2] > zeros > ok1 > [TAIL1, mark1]
proper1 > [active1, cons2] > zeros > 0 > [TAIL1, mark1]
proper1 > nats > [TAIL1, mark1]
top > [TAIL1, mark1]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


HEAD(ok(X)) → HEAD(X)
HEAD(mark(X)) → HEAD(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
HEAD(x1)  =  HEAD(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [active1, cons2] > nil > ok1 > [HEAD1, mark1]
proper1 > [active1, cons2] > s1 > ok1 > [HEAD1, mark1]
proper1 > [active1, cons2] > zeros > ok1 > [HEAD1, mark1]
proper1 > [active1, cons2] > zeros > 0 > [HEAD1, mark1]
proper1 > nats > [HEAD1, mark1]
top > [HEAD1, mark1]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADX(ok(X)) → ADX(X)
ADX(mark(X)) → ADX(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ADX(x1)  =  ADX(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [active1, cons2] > nil > ok1 > [ADX1, mark1]
proper1 > [active1, cons2] > s1 > ok1 > [ADX1, mark1]
proper1 > [active1, cons2] > zeros > ok1 > [ADX1, mark1]
proper1 > [active1, cons2] > zeros > 0 > [ADX1, mark1]
proper1 > nats > [ADX1, mark1]
top > [ADX1, mark1]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [active1, cons2] > nil > ok1 > [S1, mark1]
proper1 > [active1, cons2] > s1 > ok1 > [S1, mark1]
proper1 > [active1, cons2] > zeros > ok1 > [S1, mark1]
proper1 > [active1, cons2] > zeros > 0 > [S1, mark1]
proper1 > nats > [S1, mark1]
top > [S1, mark1]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[proper1, top] > active1 > nil > ok1
[proper1, top] > active1 > nil > mark1
[proper1, top] > active1 > cons2 > s1 > ok1
[proper1, top] > active1 > cons2 > s1 > mark1
[proper1, top] > active1 > cons2 > adx1 > ok1
[proper1, top] > active1 > cons2 > adx1 > mark1
[proper1, top] > active1 > [zeros, 0] > ok1
[proper1, top] > active1 > [zeros, 0] > mark1
[proper1, top] > active1 > head1 > ok1
[proper1, top] > active1 > head1 > mark1
[proper1, top] > nats > mark1


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  ok(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
adx(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  x1
tail(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [active1, cons2] > nil > ok1 > [INCR1, mark1]
proper1 > [active1, cons2] > s1 > ok1 > [INCR1, mark1]
proper1 > [active1, cons2] > zeros > ok1 > [INCR1, mark1]
proper1 > [active1, cons2] > zeros > 0 > [INCR1, mark1]
proper1 > nats > [INCR1, mark1]
top > [INCR1, mark1]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(34) TRUE

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(incr(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  x1
s(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  x1
tail(x1)  =  tail(x1)
active(x1)  =  x1
nil  =  nil
mark(x1)  =  mark
nats  =  nats
zeros  =  zeros
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > tail1 > [nil, nats, ok, top] > mark
proper1 > zeros > cons2 > [nil, nats, ok, top] > mark
proper1 > zeros > 0 > [nil, nats, ok, top] > mark


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  incr(x1)
s(x1)  =  s(x1)
adx(x1)  =  x1
head(x1)  =  x1
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons
nats  =  nats
zeros  =  zeros
0  =  0
tail(x1)  =  x1
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
PROPER1 > [mark, cons, zeros, top]
[s1, active1] > incr1 > [mark, cons, zeros, top]
nil > [mark, cons, zeros, top]
nats > [mark, cons, zeros, top]
0 > [mark, cons, zeros, top]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(adx(X)) → PROPER(X)
PROPER(head(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(head(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
adx(x1)  =  x1
head(x1)  =  head(x1)
active(x1)  =  active(x1)
incr(x1)  =  x1
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
tail(x1)  =  x1
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > [mark, cons] > [head1, zeros, proper1] > nats
active1 > [mark, cons] > [head1, zeros, proper1] > 0 > [nil, ok, top]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(adx(X)) → PROPER(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(adx(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
adx(x1)  =  adx(x1)
active(x1)  =  active(x1)
incr(x1)  =  incr(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons
s(x1)  =  x1
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head
tail(x1)  =  tail
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
nats > [adx1, top]
[zeros, 0] > cons > mark > [adx1, top]
head > [active1, incr1] > nil > [adx1, top]
head > [active1, incr1] > cons > mark > [adx1, top]
tail > [active1, incr1] > nil > [adx1, top]
tail > [active1, incr1] > cons > mark > [adx1, top]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(43) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(45) TRUE

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(adx(X)) → ACTIVE(X)
ACTIVE(head(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  x1
s(x1)  =  s(x1)
adx(x1)  =  adx(x1)
head(x1)  =  head(x1)
tail(x1)  =  x1
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark(x1)
nats  =  nats
zeros  =  zeros
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[active1, 0] > [nil, proper1] > s1 > [adx1, mark1] > top > ACTIVE1
[active1, 0] > [nil, proper1] > head1 > [adx1, mark1] > top > ACTIVE1
[active1, 0] > [nil, proper1] > nats > [adx1, mark1] > top > ACTIVE1
[active1, 0] > [nil, proper1] > zeros > cons2 > [adx1, mark1] > top > ACTIVE1


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
incr(x1)  =  incr(x1)
tail(x1)  =  x1
active(x1)  =  active(x1)
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
s(x1)  =  x1
adx(x1)  =  adx
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
ACTIVE1 > [0, ok]
active1 > nil > [incr1, mark, adx] > [0, ok]
active1 > [cons1, proper1] > zeros > [incr1, mark, adx] > [0, ok]
active1 > [cons1, proper1] > head1 > [incr1, mark, adx] > [0, ok]
nats > zeros > [incr1, mark, adx] > [0, ok]
top > [0, ok]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(tail(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(tail(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
tail(x1)  =  tail(x1)
active(x1)  =  x1
incr(x1)  =  x1
nil  =  nil
mark(x1)  =  mark
cons(x1, x2)  =  x2
s(x1)  =  x1
adx(x1)  =  adx(x1)
nats  =  nats
zeros  =  zeros
0  =  0
head(x1)  =  head(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > tail1 > ok1 > [nil, mark, nats]
proper1 > adx1 > ok1 > [nil, mark, nats]
proper1 > zeros > 0 > [nil, mark, nats]
proper1 > zeros > ok1 > [nil, mark, nats]
proper1 > head1 > ok1 > [nil, mark, nats]
top > [nil, mark, nats]


The following usable rules [FROCOS05] were oriented:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(52) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(54) TRUE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(incr(nil)) → mark(nil)
active(incr(cons(X, L))) → mark(cons(s(X), incr(L)))
active(adx(nil)) → mark(nil)
active(adx(cons(X, L))) → mark(incr(cons(X, adx(L))))
active(nats) → mark(adx(zeros))
active(zeros) → mark(cons(0, zeros))
active(head(cons(X, L))) → mark(X)
active(tail(cons(X, L))) → mark(L)
active(incr(X)) → incr(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(s(X)) → s(active(X))
active(adx(X)) → adx(active(X))
active(head(X)) → head(active(X))
active(tail(X)) → tail(active(X))
incr(mark(X)) → mark(incr(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
s(mark(X)) → mark(s(X))
adx(mark(X)) → mark(adx(X))
head(mark(X)) → mark(head(X))
tail(mark(X)) → mark(tail(X))
proper(incr(X)) → incr(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(s(X)) → s(proper(X))
proper(adx(X)) → adx(proper(X))
proper(nats) → ok(nats)
proper(zeros) → ok(zeros)
proper(0) → ok(0)
proper(head(X)) → head(proper(X))
proper(tail(X)) → tail(proper(X))
incr(ok(X)) → ok(incr(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
s(ok(X)) → ok(s(X))
adx(ok(X)) → ok(adx(X))
head(ok(X)) → ok(head(X))
tail(ok(X)) → ok(tail(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.