(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X)) → MARK(g(h(f(X))))
ACTIVE(f(X)) → G(h(f(X)))
ACTIVE(f(X)) → H(f(X))
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(g(X)) → ACTIVE(g(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → H(mark(X))
MARK(h(X)) → MARK(X)
F(mark(X)) → F(X)
F(active(X)) → F(X)
G(mark(X)) → G(X)
G(active(X)) → G(X)
H(mark(X)) → H(X)
H(active(X)) → H(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)
H(mark(X)) → H(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H(mark(X)) → H(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
H(x1)  =  H(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
f(x1)  =  f
g(x1)  =  g
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
f > [H1, mark1] > h1 > g

Status:
H1: multiset
mark1: multiset
f: []
g: []
h1: multiset


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

H(active(X)) → H(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


H(active(X)) → H(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
H(x1)  =  H(x1)
active(x1)  =  active(x1)
f(x1)  =  f
mark(x1)  =  mark(x1)
g(x1)  =  g
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
[H1, active1, f, mark1, g] > h

Status:
H1: multiset
active1: multiset
f: multiset
mark1: multiset
g: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
f(x1)  =  f
g(x1)  =  g
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
f > [G1, mark1] > h1 > g

Status:
G1: multiset
mark1: multiset
f: []
g: []
h1: multiset


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(active(X)) → G(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(active(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  G(x1)
active(x1)  =  active(x1)
f(x1)  =  f
mark(x1)  =  mark(x1)
g(x1)  =  g
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
[G1, active1, f, mark1, g] > h

Status:
G1: multiset
active1: multiset
f: multiset
mark1: multiset
g: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
active(x1)  =  x1
mark(x1)  =  mark(x1)
f(x1)  =  f
g(x1)  =  g
h(x1)  =  h(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
f > [F1, mark1] > h1 > g

Status:
F1: multiset
mark1: multiset
f: []
g: []
h1: multiset


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
active(x1)  =  active(x1)
f(x1)  =  f
mark(x1)  =  mark(x1)
g(x1)  =  g
h(x1)  =  h

Recursive path order with status [RPO].
Quasi-Precedence:
[F1, active1, f, mark1, g] > h

Status:
F1: multiset
active1: multiset
f: multiset
mark1: multiset
g: multiset
h: []


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(23) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(25) TRUE

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(g(h(f(X))))
MARK(f(X)) → MARK(X)
MARK(g(X)) → ACTIVE(g(X))
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(g(X)) → ACTIVE(g(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  f
ACTIVE(x1)  =  x1
mark(x1)  =  x1
g(x1)  =  g
h(x1)  =  h
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, f, h] > [g, active]

Status:
MARK: multiset
f: multiset
g: []
h: multiset
active: []


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(g(h(f(X))))
MARK(f(X)) → MARK(X)
MARK(h(X)) → ACTIVE(h(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(h(X)) → ACTIVE(h(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
f(x1)  =  f
ACTIVE(x1)  =  x1
mark(x1)  =  mark
g(x1)  =  g
h(x1)  =  h
active(x1)  =  active

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, f] > [mark, active] > h
g > [mark, active] > h

Status:
MARK: []
f: []
mark: []
g: []
h: []
active: []


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(g(h(f(X))))
MARK(f(X)) → MARK(X)
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(X)) → MARK(g(h(f(X))))
MARK(f(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
f(x1)  =  f(x1)
ACTIVE(x1)  =  x1
mark(x1)  =  x1
g(x1)  =  g
h(x1)  =  x1
active(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
f1 > g

Status:
f1: [1]
g: multiset


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(h(X)) → MARK(X)

The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(h(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
h(x1)  =  h(x1)
active(x1)  =  x1
f(x1)  =  f(x1)
mark(x1)  =  x1
g(x1)  =  g

Recursive path order with status [RPO].
Quasi-Precedence:
[h1, f1, g]

Status:
h1: multiset
f1: multiset
g: multiset


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

(36) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(g(h(f(X))))
mark(f(X)) → active(f(mark(X)))
mark(g(X)) → active(g(X))
mark(h(X)) → active(h(mark(X)))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
h(mark(X)) → h(X)
h(active(X)) → h(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(38) TRUE