(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
mark1 > af1 > g1
mark1 > af1 > h1
mark1 > af1 > f1
Status:
trivial
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
a__f(X) → g(h(f(X)))
mark(f(X)) → a__f(mark(X))
mark(g(X)) → g(X)
mark(h(X)) → h(mark(X))
a__f(X) → f(X)
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE