0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 PisEmptyProof (⇔)
↳11 TRUE
↳12 QDP
↳13 QDPOrderProof (⇔)
↳14 QDP
↳15 PisEmptyProof (⇔)
↳16 TRUE
↳17 QDP
↳18 QDPOrderProof (⇔)
↳19 QDP
↳20 PisEmptyProof (⇔)
↳21 TRUE
↳22 QDP
↳23 QDPOrderProof (⇔)
↳24 QDP
↳25 DependencyGraphProof (⇔)
↳26 TRUE
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) → ACTIVATE(Z)
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → ACTIVATE(Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons(X, Z)) → ACTIVATE(Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → ACTIVATE(Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → S(plus(X, Y))
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__s(X)) → ACTIVATE(X)
activate1 > s1 > ns1 > cons
activate1 > s1 > rcons > cons
activate1 > s1 > posrecip1 > cons
2ndsneg > rnil > cons
2ndsneg > s1 > ns1 > cons
2ndsneg > s1 > rcons > cons
2ndsneg > s1 > posrecip1 > cons
square1 > times2 > 0 > rnil > cons
square1 > times2 > plus2 > s1 > ns1 > cons
square1 > times2 > plus2 > s1 > rcons > cons
square1 > times2 > plus2 > s1 > posrecip1 > cons
ns1: [1]
cons: []
0: []
rnil: []
s1: [1]
activate1: [1]
rcons: []
posrecip1: [1]
2ndsneg: []
plus2: [1,2]
times2: [1,2]
square1: [1]
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
ACTIVATE(n__from(X)) → ACTIVATE(X)
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__from(X)) → ACTIVATE(X)
activate1 > from1 > nfrom1
2ndsneg2 > 2ndspos1 > rnil
2ndsneg2 > 2ndspos1 > rcons
2ndsneg2 > 2ndspos1 > posrecip1
pi1 > from1 > nfrom1
pi1 > 2ndspos1 > rnil
pi1 > 2ndspos1 > rcons
pi1 > 2ndspos1 > posrecip1
pi1 > 0 > rnil
square1 > times1 > 0 > rnil
ACTIVATE1: [1]
nfrom1: [1]
from1: [1]
2ndspos1: [1]
0: []
rnil: []
activate1: [1]
rcons: []
posrecip1: [1]
2ndsneg2: [2,1]
pi1: [1]
times1: [1]
square1: [1]
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
PLUS(s(X), Y) → PLUS(X, Y)
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(X), Y) → PLUS(X, Y)
PLUS2 > cons
cons2 > activate1 > s1 > ns1 > cons
cons2 > activate1 > s1 > 2ndspos > rnil > cons
cons2 > activate1 > s1 > 2ndspos > posrecip > cons
cons2 > activate1 > s1 > negrecip > cons
cons2 > 2ndsneg1 > s1 > ns1 > cons
cons2 > 2ndsneg1 > s1 > 2ndspos > rnil > cons
cons2 > 2ndsneg1 > s1 > 2ndspos > posrecip > cons
cons2 > 2ndsneg1 > s1 > negrecip > cons
pi1 > 2ndspos > rnil > cons
pi1 > 2ndspos > posrecip > cons
pi1 > 0 > cons
square1 > times2 > 0 > cons
square1 > times2 > plus2 > s1 > ns1 > cons
square1 > times2 > plus2 > s1 > 2ndspos > rnil > cons
square1 > times2 > plus2 > s1 > 2ndspos > posrecip > cons
square1 > times2 > plus2 > s1 > negrecip > cons
PLUS2: [2,1]
s1: [1]
cons: []
ns1: [1]
2ndspos: []
0: []
rnil: []
cons2: []
activate1: [1]
posrecip: []
2ndsneg1: [1]
negrecip: []
pi1: [1]
plus2: [1,2]
times2: [1,2]
square1: [1]
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
TIMES(s(X), Y) → TIMES(X, Y)
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(s(X), Y) → TIMES(X, Y)
TIMES2 > cons
cons2 > activate1 > s1 > ns1 > cons
cons2 > activate1 > s1 > 2ndspos > rnil > cons
cons2 > activate1 > s1 > 2ndspos > posrecip > cons
cons2 > activate1 > s1 > negrecip > cons
cons2 > 2ndsneg1 > s1 > ns1 > cons
cons2 > 2ndsneg1 > s1 > 2ndspos > rnil > cons
cons2 > 2ndsneg1 > s1 > 2ndspos > posrecip > cons
cons2 > 2ndsneg1 > s1 > negrecip > cons
pi1 > 2ndspos > rnil > cons
pi1 > 2ndspos > posrecip > cons
pi1 > 0 > cons
square1 > times2 > 0 > cons
square1 > times2 > plus2 > s1 > ns1 > cons
square1 > times2 > plus2 > s1 > 2ndspos > rnil > cons
square1 > times2 > plus2 > s1 > 2ndspos > posrecip > cons
square1 > times2 > plus2 > s1 > negrecip > cons
TIMES2: [2,1]
s1: [1]
cons: []
ns1: [1]
2ndspos: []
0: []
rnil: []
cons2: []
activate1: [1]
posrecip: []
2ndsneg1: [1]
negrecip: []
pi1: [1]
plus2: [1,2]
times2: [1,2]
square1: [1]
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
pi1 > 2ndspos1 > posrecip > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > activate1 > s1 > 2NDSPOS1 > 2NDSNEG1 > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > activate1 > s1 > ns1 > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > activate1 > from > cons > 2NDSNEG1 > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > activate1 > from > ns1 > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > rnil > nfrom
pi1 > 2ndspos1 > 2ndsneg1 > negrecip > nfrom
pi1 > 0 > nfrom
square1 > times2 > 0 > nfrom
square1 > times2 > plus2 > s1 > 2NDSPOS1 > 2NDSNEG1 > nfrom
square1 > times2 > plus2 > s1 > ns1 > nfrom
2NDSPOS1: [1]
s1: [1]
cons: []
2NDSNEG1: [1]
activate1: [1]
from: []
nfrom: []
ns1: [1]
2ndspos1: [1]
0: []
rnil: []
posrecip: []
2ndsneg1: [1]
negrecip: []
pi1: [1]
plus2: [1,2]
times2: [1,2]
square1: [1]
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X