(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) → ACTIVATE(Z)
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSPOS(s(N), cons2(X, cons(Y, Z))) → ACTIVATE(Z)
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons(X, Z)) → ACTIVATE(Z)
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → ACTIVATE(Z)
PI(X) → 2NDSPOS(X, from(0))
PI(X) → FROM(0)
PLUS(s(X), Y) → S(plus(X, Y))
PLUS(s(X), Y) → PLUS(X, Y)
TIMES(s(X), Y) → PLUS(Y, times(X, Y))
TIMES(s(X), Y) → TIMES(X, Y)
SQUARE(X) → TIMES(X, X)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 11 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__from(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__s(x1)  =  x1
n__from(x1)  =  n__from(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  cons(x2)
2ndspos(x1, x2)  =  x1
0  =  0
rnil  =  rnil
s(x1)  =  x1
cons2(x1, x2)  =  cons2(x1)
activate(x1)  =  activate(x1)
rcons(x1, x2)  =  x2
posrecip(x1)  =  posrecip(x1)
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  negrecip(x1)
pi(x1)  =  pi(x1)
plus(x1, x2)  =  x2
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Precedence:
0 > rnil > cons21
activate1 > from1 > nfrom1 > cons21
activate1 > from1 > cons1 > cons21
posrecip1 > cons21
negrecip1 > cons21
pi1 > from1 > nfrom1 > cons21
pi1 > from1 > cons1 > cons21
square1 > times2 > cons21

Status:
from1: [1]
cons1: [1]
rnil: []
negrecip1: [1]
activate1: [1]
posrecip1: [1]
pi1: [1]
square1: [1]
0: []
cons21: [1]
nfrom1: [1]
times2: [2,1]

The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__s(x1)  =  n__s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x1
n__from(x1)  =  n__from(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
s(x1)  =  s(x1)
cons2(x1, x2)  =  x2
activate(x1)  =  activate(x1)
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  x1
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Precedence:
activate1 > from1 > ns1 > negrecip
activate1 > from1 > nfrom1 > negrecip
activate1 > s1 > ns1 > negrecip
pi1 > from1 > ns1 > negrecip
pi1 > from1 > nfrom1 > negrecip
pi1 > 2ndspos1 > rnil > negrecip
pi1 > 2ndspos1 > s1 > ns1 > negrecip
pi1 > 2ndspos1 > posrecip > negrecip
pi1 > 0 > rnil > negrecip
square1 > times2 > 0 > rnil > negrecip
square1 > times2 > plus2 > s1 > ns1 > negrecip

Status:
plus2: [1,2]
from1: [1]
rnil: []
activate1: [1]
pi1: [1]
ns1: [1]
square1: [1]
0: []
negrecip: []
nfrom1: [1]
times2: [1,2]
s1: [1]
posrecip: []
2ndspos1: [1]

The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(s(X), Y) → PLUS(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(s(X), Y) → PLUS(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
s(x1)  =  s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x2
n__from(x1)  =  n__from(x1)
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
cons2(x1, x2)  =  x2
activate(x1)  =  activate(x1)
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg(x1)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Precedence:
0 > rnil > PLUS2
activate1 > s1 > ns1 > PLUS2
activate1 > s1 > rcons2 > PLUS2
activate1 > s1 > 2ndsneg1 > 2ndspos1 > posrecip > PLUS2
activate1 > s1 > negrecip > PLUS2
activate1 > from1 > nfrom1 > PLUS2
activate1 > from1 > ns1 > PLUS2
pi1 > 2ndspos1 > posrecip > PLUS2
square1 > times2 > plus2 > s1 > ns1 > PLUS2
square1 > times2 > plus2 > s1 > rcons2 > PLUS2
square1 > times2 > plus2 > s1 > 2ndsneg1 > 2ndspos1 > posrecip > PLUS2
square1 > times2 > plus2 > s1 > negrecip > PLUS2

Status:
from1: [1]
plus2: [2,1]
rnil: []
activate1: [1]
rcons2: [1,2]
ns1: [1]
pi1: [1]
square1: [1]
0: []
negrecip: []
PLUS2: [2,1]
nfrom1: [1]
times2: [1,2]
s1: [1]
posrecip: []
2ndsneg1: [1]
2ndspos1: [1]

The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TIMES(s(X), Y) → TIMES(X, Y)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TIMES(s(X), Y) → TIMES(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TIMES(x1, x2)  =  TIMES(x1, x2)
s(x1)  =  s(x1)
from(x1)  =  from(x1)
cons(x1, x2)  =  x2
n__from(x1)  =  n__from(x1)
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1)
0  =  0
rnil  =  rnil
cons2(x1, x2)  =  x2
activate(x1)  =  activate(x1)
rcons(x1, x2)  =  rcons(x1, x2)
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg(x1)
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Precedence:
0 > rnil > TIMES2
activate1 > s1 > ns1 > TIMES2
activate1 > s1 > rcons2 > TIMES2
activate1 > s1 > 2ndsneg1 > 2ndspos1 > posrecip > TIMES2
activate1 > s1 > negrecip > TIMES2
activate1 > from1 > nfrom1 > TIMES2
activate1 > from1 > ns1 > TIMES2
pi1 > 2ndspos1 > posrecip > TIMES2
square1 > times2 > plus2 > s1 > ns1 > TIMES2
square1 > times2 > plus2 > s1 > rcons2 > TIMES2
square1 > times2 > plus2 > s1 > 2ndsneg1 > 2ndspos1 > posrecip > TIMES2
square1 > times2 > plus2 > s1 > negrecip > TIMES2

Status:
from1: [1]
plus2: [2,1]
rnil: []
activate1: [1]
rcons2: [1,2]
ns1: [1]
pi1: [1]
square1: [1]
0: []
negrecip: []
TIMES2: [2,1]
nfrom1: [1]
times2: [1,2]
s1: [1]
posrecip: []
2ndsneg1: [1]
2ndspos1: [1]

The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


2NDSPOS(s(N), cons2(X, cons(Y, Z))) → 2NDSNEG(N, activate(Z))
2NDSNEG(s(N), cons2(X, cons(Y, Z))) → 2NDSPOS(N, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
2NDSPOS(x1, x2)  =  x1
s(x1)  =  s(x1)
cons2(x1, x2)  =  cons2
cons(x1, x2)  =  x2
2NDSNEG(x1, x2)  =  2NDSNEG(x1)
activate(x1)  =  activate(x1)
from(x1)  =  from(x1)
n__from(x1)  =  n__from(x1)
n__s(x1)  =  n__s(x1)
2ndspos(x1, x2)  =  2ndspos(x1, x2)
0  =  0
rnil  =  rnil
rcons(x1, x2)  =  x1
posrecip(x1)  =  posrecip
2ndsneg(x1, x2)  =  2ndsneg
negrecip(x1)  =  negrecip
pi(x1)  =  pi(x1)
plus(x1, x2)  =  plus(x1, x2)
times(x1, x2)  =  times(x1, x2)
square(x1)  =  square(x1)

Lexicographic path order with status [LPO].
Precedence:
2ndsneg > 2ndspos2 > activate1 > s1 > 2NDSNEG1 > cons2
2ndsneg > 2ndspos2 > activate1 > s1 > ns1 > cons2
2ndsneg > 2ndspos2 > activate1 > from1 > nfrom1 > cons2
2ndsneg > 2ndspos2 > activate1 > from1 > ns1 > cons2
2ndsneg > 2ndspos2 > rnil > cons2
2ndsneg > 2ndspos2 > posrecip > cons2
2ndsneg > negrecip > cons2
pi1 > 2ndspos2 > activate1 > s1 > 2NDSNEG1 > cons2
pi1 > 2ndspos2 > activate1 > s1 > ns1 > cons2
pi1 > 2ndspos2 > activate1 > from1 > nfrom1 > cons2
pi1 > 2ndspos2 > activate1 > from1 > ns1 > cons2
pi1 > 2ndspos2 > rnil > cons2
pi1 > 2ndspos2 > posrecip > cons2
pi1 > 0 > rnil > cons2
square1 > times2 > 0 > rnil > cons2
square1 > times2 > plus2 > s1 > 2NDSNEG1 > cons2
square1 > times2 > plus2 > s1 > ns1 > cons2

Status:
from1: [1]
plus2: [2,1]
rnil: []
cons2: []
2NDSNEG1: [1]
activate1: [1]
ns1: [1]
pi1: [1]
square1: [1]
2ndsneg: []
0: []
negrecip: []
2ndspos2: [2,1]
nfrom1: [1]
times2: [2,1]
s1: [1]
posrecip: []

The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2NDSNEG(s(N), cons(X, Z)) → 2NDSNEG(s(N), cons2(X, activate(Z)))
2NDSPOS(s(N), cons(X, Z)) → 2NDSPOS(s(N), cons2(X, activate(Z)))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(n__s(X)))
2ndspos(0, Z) → rnil
2ndspos(s(N), cons(X, Z)) → 2ndspos(s(N), cons2(X, activate(Z)))
2ndspos(s(N), cons2(X, cons(Y, Z))) → rcons(posrecip(Y), 2ndsneg(N, activate(Z)))
2ndsneg(0, Z) → rnil
2ndsneg(s(N), cons(X, Z)) → 2ndsneg(s(N), cons2(X, activate(Z)))
2ndsneg(s(N), cons2(X, cons(Y, Z))) → rcons(negrecip(Y), 2ndspos(N, activate(Z)))
pi(X) → 2ndspos(X, from(0))
plus(0, Y) → Y
plus(s(X), Y) → s(plus(X, Y))
times(0, Y) → 0
times(s(X), Y) → plus(Y, times(X, Y))
square(X) → times(X, X)
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(26) TRUE