(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(n__a, X, X) → f(activate(X), b, n__b)
ba
an__a
bn__b
activate(n__a) → a
activate(n__b) → b
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(n__a, X, X) → F(activate(X), b, n__b)
F(n__a, X, X) → ACTIVATE(X)
F(n__a, X, X) → B
BA
ACTIVATE(n__a) → A
ACTIVATE(n__b) → B

The TRS R consists of the following rules:

f(n__a, X, X) → f(activate(X), b, n__b)
ba
an__a
bn__b
activate(n__a) → a
activate(n__b) → b
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(n__a, X, X) → F(activate(X), b, n__b)

The TRS R consists of the following rules:

f(n__a, X, X) → f(activate(X), b, n__b)
ba
an__a
bn__b
activate(n__a) → a
activate(n__b) → b
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.