(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
ZPRIMESSIEVE(nats(s(s(0))))
ZPRIMESNATS(s(s(0)))
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
ACTIVATE(n__sieve(X)) → SIEVE(X)
ACTIVATE(n__nats(X)) → NATS(X)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__sieve(X)) → SIEVE(X)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__sieve(X)) → SIEVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__filter(x1, x2, x3)  =  x1
FILTER(x1, x2, x3)  =  x1
cons(x1, x2)  =  x2
0  =  0
n__sieve(x1)  =  n__sieve(x1)
SIEVE(x1)  =  x1
s(x1)  =  x1
activate(x1)  =  x1
filter(x1, x2, x3)  =  x1
sieve(x1)  =  sieve(x1)
n__nats(x1)  =  x1
nats(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [nsieve1, sieve1]

Status:
0: []
nsieve1: [1]
sieve1: [1]


The following usable rules [FROCOS05] were oriented:

activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
filter(X1, X2, X3) → n__filter(X1, X2, X3)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
sieve(X) → n__sieve(X)
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
nats(N) → cons(N, n__nats(s(N)))
nats(X) → n__nats(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)

The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
FILTER(x1, x2, x3)  =  FILTER(x1, x2, x3)
cons(x1, x2)  =  cons(x1, x2)
0  =  0
ACTIVATE(x1)  =  ACTIVATE(x1)
n__filter(x1, x2, x3)  =  n__filter(x1, x2, x3)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[FILTER3, cons2, 0, ACTIVATE1, nfilter3]

Status:
FILTER3: [2,3,1]
cons2: [2,1]
0: []
ACTIVATE1: [1]
nfilter3: [1,2,3]


The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimessieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE