0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 DependencyGraphProof (⇔)
↳8 QDP
↳9 QDPOrderProof (⇔)
↳10 QDP
↳11 DependencyGraphProof (⇔)
↳12 TRUE
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
ZPRIMES → SIEVE(nats(s(s(0))))
ZPRIMES → NATS(s(s(0)))
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
ACTIVATE(n__sieve(X)) → SIEVE(X)
ACTIVATE(n__nats(X)) → NATS(X)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__sieve(X)) → SIEVE(X)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__sieve(X)) → SIEVE(X)
0 > [nsieve1, s, sieve1]
[nnats, nats] > [nsieve1, s, sieve1]
nnats: []
nsieve1: [1]
s: multiset
nats: []
0: multiset
sieve1: [1]
activate(n__nats(X)) → nats(X)
activate(n__sieve(X)) → sieve(X)
activate(X) → X
sieve(X) → n__sieve(X)
filter(X1, X2, X3) → n__filter(X1, X2, X3)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
nats(X) → n__nats(X)
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
nats(N) → cons(N, n__nats(s(N)))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
SIEVE(cons(0, Y)) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → FILTER(activate(Y), N, N)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
SIEVE(cons(s(N), Y)) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
FILTER(cons(X, Y), 0, M) → ACTIVATE(Y)
FILTER(cons(X, Y), s(N), M) → ACTIVATE(Y)
trivial
cons2: multiset
s: multiset
0: multiset
ACTIVATE(n__filter(X1, X2, X3)) → FILTER(X1, X2, X3)
filter(cons(X, Y), 0, M) → cons(0, n__filter(activate(Y), M, M))
filter(cons(X, Y), s(N), M) → cons(X, n__filter(activate(Y), N, M))
sieve(cons(0, Y)) → cons(0, n__sieve(activate(Y)))
sieve(cons(s(N), Y)) → cons(s(N), n__sieve(filter(activate(Y), N, N)))
nats(N) → cons(N, n__nats(s(N)))
zprimes → sieve(nats(s(s(0))))
filter(X1, X2, X3) → n__filter(X1, X2, X3)
sieve(X) → n__sieve(X)
nats(X) → n__nats(X)
activate(n__filter(X1, X2, X3)) → filter(X1, X2, X3)
activate(n__sieve(X)) → sieve(X)
activate(n__nats(X)) → nats(X)
activate(X) → X