(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(fib(N)) → MARK(sel(N, fib1(s(0), s(0))))
ACTIVE(fib(N)) → SEL(N, fib1(s(0), s(0)))
ACTIVE(fib(N)) → FIB1(s(0), s(0))
ACTIVE(fib(N)) → S(0)
ACTIVE(fib1(X, Y)) → MARK(cons(X, fib1(Y, add(X, Y))))
ACTIVE(fib1(X, Y)) → CONS(X, fib1(Y, add(X, Y)))
ACTIVE(fib1(X, Y)) → FIB1(Y, add(X, Y))
ACTIVE(fib1(X, Y)) → ADD(X, Y)
ACTIVE(add(0, X)) → MARK(X)
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
ACTIVE(add(s(X), Y)) → S(add(X, Y))
ACTIVE(add(s(X), Y)) → ADD(X, Y)
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
ACTIVE(sel(s(N), cons(X, XS))) → SEL(N, XS)
MARK(fib(X)) → ACTIVE(fib(mark(X)))
MARK(fib(X)) → FIB(mark(X))
MARK(fib(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
MARK(sel(X1, X2)) → SEL(mark(X1), mark(X2))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(fib1(X1, X2)) → ACTIVE(fib1(mark(X1), mark(X2)))
MARK(fib1(X1, X2)) → FIB1(mark(X1), mark(X2))
MARK(fib1(X1, X2)) → MARK(X1)
MARK(fib1(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(0) → ACTIVE(0)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
MARK(add(X1, X2)) → ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
FIB(mark(X)) → FIB(X)
FIB(active(X)) → FIB(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)
FIB1(mark(X1), X2) → FIB1(X1, X2)
FIB1(X1, mark(X2)) → FIB1(X1, X2)
FIB1(active(X1), X2) → FIB1(X1, X2)
FIB1(X1, active(X2)) → FIB1(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(active(X1), X2) → ADD(X1, X2)
ADD(X1, active(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 7 SCCs with 16 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(X1, mark(X2)) → ADD(X1, X2)
ADD(mark(X1), X2) → ADD(X1, X2)
ADD(active(X1), X2) → ADD(X1, X2)
ADD(X1, active(X2)) → ADD(X1, X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIB1(X1, mark(X2)) → FIB1(X1, X2)
FIB1(mark(X1), X2) → FIB1(X1, X2)
FIB1(active(X1), X2) → FIB1(X1, X2)
FIB1(X1, active(X2)) → FIB1(X1, X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(active(X1), X2) → SEL(X1, X2)
SEL(X1, active(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIB(active(X)) → FIB(X)
FIB(mark(X)) → FIB(X)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(fib(X)) → ACTIVE(fib(mark(X)))
ACTIVE(fib(N)) → MARK(sel(N, fib1(s(0), s(0))))
MARK(fib(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(fib1(X, Y)) → MARK(cons(X, fib1(Y, add(X, Y))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(fib1(X1, X2)) → ACTIVE(fib1(mark(X1), mark(X2)))
ACTIVE(add(0, X)) → MARK(X)
MARK(fib1(X1, X2)) → MARK(X1)
MARK(fib1(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
fib(x1)  =  fib
ACTIVE(x1)  =  x1
mark(x1)  =  mark
sel(x1, x2)  =  sel
fib1(x1, x2)  =  fib1
s(x1)  =  s
0  =  0
cons(x1, x2)  =  cons
add(x1, x2)  =  add
active(x1)  =  active

Lexicographic Path Order [LPO].
Precedence:
[MARK, fib, sel, fib1, cons, add] > [mark, active] > s
[MARK, fib, sel, fib1, cons, add] > [mark, active] > 0


The following usable rules [FROCOS05] were oriented:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(fib(X)) → ACTIVE(fib(mark(X)))
ACTIVE(fib(N)) → MARK(sel(N, fib1(s(0), s(0))))
MARK(fib(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(fib1(X, Y)) → MARK(cons(X, fib1(Y, add(X, Y))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(fib1(X1, X2)) → ACTIVE(fib1(mark(X1), mark(X2)))
ACTIVE(add(0, X)) → MARK(X)
MARK(fib1(X1, X2)) → MARK(X1)
MARK(fib1(X1, X2)) → MARK(X2)
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
fib(x1)  =  fib
ACTIVE(x1)  =  x1
mark(x1)  =  mark
sel(x1, x2)  =  sel
fib1(x1, x2)  =  fib1
s(x1)  =  s
0  =  0
cons(x1, x2)  =  cons
add(x1, x2)  =  add
active(x1)  =  active

Lexicographic Path Order [LPO].
Precedence:
s > [MARK, fib, sel, fib1, add] > [mark, 0, active] > cons


The following usable rules [FROCOS05] were oriented:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(fib(X)) → ACTIVE(fib(mark(X)))
ACTIVE(fib(N)) → MARK(sel(N, fib1(s(0), s(0))))
MARK(fib(X)) → MARK(X)
MARK(sel(X1, X2)) → ACTIVE(sel(mark(X1), mark(X2)))
ACTIVE(fib1(X, Y)) → MARK(cons(X, fib1(Y, add(X, Y))))
MARK(sel(X1, X2)) → MARK(X1)
MARK(sel(X1, X2)) → MARK(X2)
MARK(fib1(X1, X2)) → ACTIVE(fib1(mark(X1), mark(X2)))
ACTIVE(add(0, X)) → MARK(X)
MARK(fib1(X1, X2)) → MARK(X1)
MARK(fib1(X1, X2)) → MARK(X2)
ACTIVE(add(s(X), Y)) → MARK(s(add(X, Y)))
MARK(s(X)) → MARK(X)
ACTIVE(sel(0, cons(X, XS))) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → ACTIVE(add(mark(X1), mark(X2)))
ACTIVE(sel(s(N), cons(X, XS))) → MARK(sel(N, XS))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

active(fib(N)) → mark(sel(N, fib1(s(0), s(0))))
active(fib1(X, Y)) → mark(cons(X, fib1(Y, add(X, Y))))
active(add(0, X)) → mark(X)
active(add(s(X), Y)) → mark(s(add(X, Y)))
active(sel(0, cons(X, XS))) → mark(X)
active(sel(s(N), cons(X, XS))) → mark(sel(N, XS))
mark(fib(X)) → active(fib(mark(X)))
mark(sel(X1, X2)) → active(sel(mark(X1), mark(X2)))
mark(fib1(X1, X2)) → active(fib1(mark(X1), mark(X2)))
mark(s(X)) → active(s(mark(X)))
mark(0) → active(0)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(add(X1, X2)) → active(add(mark(X1), mark(X2)))
fib(mark(X)) → fib(X)
fib(active(X)) → fib(X)
sel(mark(X1), X2) → sel(X1, X2)
sel(X1, mark(X2)) → sel(X1, X2)
sel(active(X1), X2) → sel(X1, X2)
sel(X1, active(X2)) → sel(X1, X2)
fib1(mark(X1), X2) → fib1(X1, X2)
fib1(X1, mark(X2)) → fib1(X1, X2)
fib1(active(X1), X2) → fib1(X1, X2)
fib1(X1, active(X2)) → fib1(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
add(mark(X1), X2) → add(X1, X2)
add(X1, mark(X2)) → add(X1, X2)
add(active(X1), X2) → add(X1, X2)
add(X1, active(X2)) → add(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.