(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

2ND(cons(X, XS)) → HEAD(activate(XS))
2ND(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__take(x1, x2)  =  n__take(x1, x2)
TAKE(x1, x2)  =  TAKE(x1, x2)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)
from(x1)  =  from(x1)
n__from(x1)  =  x1
head(x1)  =  x1
2nd(x1)  =  2nd(x1)
activate(x1)  =  activate(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
nil  =  nil
sel(x1, x2)  =  sel(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE1, TAKE2] > nil
[ntake2, take2] > [from1, activate1] > s1 > cons2 > nil
2nd1 > [from1, activate1] > s1 > cons2 > nil
0 > nil
sel2 > [from1, activate1] > s1 > cons2 > nil

Status:
ACTIVATE1: [1]
ntake2: [1,2]
TAKE2: [2,1]
s1: multiset
cons2: [2,1]
from1: multiset
2nd1: multiset
activate1: multiset
take2: [1,2]
0: multiset
nil: multiset
sel2: [1,2]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))

The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)
activate(x1)  =  activate(x1)
from(x1)  =  from(x1)
n__from(x1)  =  x1
head(x1)  =  head(x1)
2nd(x1)  =  2nd(x1)
take(x1, x2)  =  take(x1, x2)
0  =  0
nil  =  nil
n__take(x1, x2)  =  n__take(x1, x2)
sel(x1, x2)  =  sel(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
SEL1 > [activate1, from1] > [s1, cons2]
2nd1 > [activate1, from1] > [s1, cons2]
2nd1 > head1 > [s1, cons2]
[take2, ntake2] > [activate1, from1] > [s1, cons2]
[take2, ntake2] > nil > [s1, cons2]
0 > nil > [s1, cons2]
sel2 > [activate1, from1] > [s1, cons2]

Status:
SEL1: multiset
s1: multiset
cons2: multiset
activate1: [1]
from1: [1]
head1: multiset
2nd1: multiset
take2: [1,2]
0: multiset
nil: multiset
ntake2: [1,2]
sel2: [1,2]


The following usable rules [FROCOS05] were oriented:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE