(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
2ND(cons(X, XS)) → HEAD(activate(XS))
2ND(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__from(X)) → FROM(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The TRS R consists of the following rules:
from(X) → cons(X, n__from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(activate(XS))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
from(X) → n__from(X)
take(X1, X2) → n__take(X1, X2)
activate(n__from(X)) → from(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.