(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

cf(n__g(n__c))
f(n__g(X)) → g(activate(X))
g(X) → n__g(X)
cn__c
activate(n__g(X)) → g(X)
activate(n__c) → c
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CF(n__g(n__c))
F(n__g(X)) → G(activate(X))
F(n__g(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(X)
ACTIVATE(n__c) → C

The TRS R consists of the following rules:

cf(n__g(n__c))
f(n__g(X)) → g(activate(X))
g(X) → n__g(X)
cn__c
activate(n__g(X)) → g(X)
activate(n__c) → c
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(n__g(X)) → ACTIVATE(X)
ACTIVATE(n__c) → C
CF(n__g(n__c))

The TRS R consists of the following rules:

cf(n__g(n__c))
f(n__g(X)) → g(activate(X))
g(X) → n__g(X)
cn__c
activate(n__g(X)) → g(X)
activate(n__c) → c
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.