(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
FIRST(0, Z) → NIL
FIRST(s(X), cons(Y, Z)) → CONS(Y, n__first(X, activate(Z)))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
FROM(X) → CONS(X, n__from(n__s(X)))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
SEL1(s(X), cons(Y, Z)) → ACTIVATE(Z)
SEL1(0, cons(X, Z)) → QUOTE(X)
FIRST1(s(X), cons(Y, Z)) → QUOTE(Y)
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
FIRST1(s(X), cons(Y, Z)) → ACTIVATE(Z)
QUOTE1(n__cons(X, Z)) → QUOTE(activate(X))
QUOTE1(n__cons(X, Z)) → ACTIVATE(X)
QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))
QUOTE1(n__cons(X, Z)) → ACTIVATE(Z)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__s(X)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
QUOTE(n__sel(X, Z)) → ACTIVATE(X)
QUOTE(n__sel(X, Z)) → ACTIVATE(Z)
QUOTE1(n__first(X, Z)) → FIRST1(activate(X), activate(Z))
QUOTE1(n__first(X, Z)) → ACTIVATE(X)
QUOTE1(n__first(X, Z)) → ACTIVATE(Z)
UNQUOTE(01) → 01
UNQUOTE(s1(X)) → S(unquote(X))
UNQUOTE(s1(X)) → UNQUOTE(X)
UNQUOTE1(nil1) → NIL
UNQUOTE1(cons1(X, Z)) → FCONS(unquote(X), unquote1(Z))
UNQUOTE1(cons1(X, Z)) → UNQUOTE(X)
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
FCONS(X, Z) → CONS(X, Z)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__0) → 01
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 6 SCCs with 26 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE(s1(X)) → UNQUOTE(X)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
UNQUOTE1(cons1(X, Z)) → UNQUOTE1(Z)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → FIRST(activate(X1), activate(X2))
FIRST(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__first(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(X1, X2)) → SEL(activate(X1), activate(X2))
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__sel(X1, X2)) → ACTIVATE(X2)
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL1(0, cons(X, Z)) → QUOTE(X)
QUOTE(n__s(X)) → QUOTE(activate(X))
QUOTE(n__sel(X, Z)) → SEL1(activate(X), activate(Z))
SEL1(s(X), cons(Y, Z)) → SEL1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FIRST1(s(X), cons(Y, Z)) → FIRST1(X, activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
QUOTE1(n__cons(X, Z)) → QUOTE1(activate(Z))
The TRS R consists of the following rules:
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
sel(0, cons(X, Z)) → X
first(0, Z) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(n__s(X)))
sel1(s(X), cons(Y, Z)) → sel1(X, activate(Z))
sel1(0, cons(X, Z)) → quote(X)
first1(0, Z) → nil1
first1(s(X), cons(Y, Z)) → cons1(quote(Y), first1(X, activate(Z)))
quote(n__0) → 01
quote1(n__cons(X, Z)) → cons1(quote(activate(X)), quote1(activate(Z)))
quote1(n__nil) → nil1
quote(n__s(X)) → s1(quote(activate(X)))
quote(n__sel(X, Z)) → sel1(activate(X), activate(Z))
quote1(n__first(X, Z)) → first1(activate(X), activate(Z))
unquote(01) → 0
unquote(s1(X)) → s(unquote(X))
unquote1(nil1) → nil
unquote1(cons1(X, Z)) → fcons(unquote(X), unquote1(Z))
fcons(X, Z) → cons(X, Z)
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
s(X) → n__s(X)
0 → n__0
cons(X1, X2) → n__cons(X1, X2)
nil → n__nil
sel(X1, X2) → n__sel(X1, X2)
activate(n__first(X1, X2)) → first(activate(X1), activate(X2))
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(n__0) → 0
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__nil) → nil
activate(n__sel(X1, X2)) → sel(activate(X1), activate(X2))
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.