(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(active(x1)) = x1   
POL(c) = 0   
POL(f(x1)) = x1   
POL(false) = 1   
POL(if(x1, x2, x3)) = x1 + x2 + x3   
POL(mark(x1)) = x1   
POL(true) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

active(if(false, X, Y)) → mark(Y)


(2) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.

(3) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Polynomial interpretation [POLO]:

POL(active(x1)) = x1   
POL(c) = 0   
POL(f(x1)) = 2·x1   
POL(false) = 2   
POL(if(x1, x2, x3)) = x1 + 2·x2 + x3   
POL(mark(x1)) = 2·x1   
POL(true) = 0   
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

mark(false) → active(false)


(4) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X)) → MARK(if(X, c, f(true)))
ACTIVE(f(X)) → IF(X, c, f(true))
ACTIVE(f(X)) → F(true)
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
MARK(if(X1, X2, X3)) → IF(mark(X1), mark(X2), X3)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)
MARK(c) → ACTIVE(c)
MARK(true) → ACTIVE(true)
F(mark(X)) → F(X)
F(active(X)) → F(X)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 6 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • IF(X1, mark(X2), X3) → IF(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3

  • IF(mark(X1), X2, X3) → IF(X1, X2, X3)
    The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3

  • IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

  • IF(active(X1), X2, X3) → IF(X1, X2, X3)
    The graph contains the following edges 1 > 1, 2 >= 2, 3 >= 3

  • IF(X1, active(X2), X3) → IF(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 > 2, 3 >= 3

  • IF(X1, X2, active(X3)) → IF(X1, X2, X3)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F(active(X)) → F(X)
    The graph contains the following edges 1 > 1

  • F(mark(X)) → F(X)
    The graph contains the following edges 1 > 1

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(if(X, c, f(true)))
MARK(f(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

MARK(f(X)) → MARK(X)


Used ordering: Polynomial interpretation [POLO]:

POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(c) = 0   
POL(f(x1)) = 1 + x1   
POL(if(x1, x2, x3)) = x1 + x2 + x3   
POL(mark(x1)) = x1   
POL(true) = 0   

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(if(X, c, f(true)))
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(if(true, X, Y)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(MARK(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(f(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(ACTIVE(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(if(x1, x2, x3)) =
/0\
\0/
+
/10\
\00/
·x1 +
/10\
\00/
·x2 +
/00\
\00/
·x3

POL(c) =
/0\
\0/

POL(true) =
/1\
\0/

POL(active(x1)) =
/0\
\0/
+
/11\
\00/
·x1

The following usable rules [FROCOS05] were oriented:

mark(true) → active(true)
mark(c) → active(c)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
active(f(X)) → mark(if(X, c, f(true)))
mark(f(X)) → active(f(mark(X)))
active(if(true, X, Y)) → mark(X)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(if(X, c, f(true)))
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(f(X)) → ACTIVE(f(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(MARK(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(f(x1)) =
/1\
\0/
+
/10\
\10/
·x1

POL(ACTIVE(x1)) =
/0\
\0/
+
/01\
\00/
·x1

POL(mark(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(if(x1, x2, x3)) =
/0\
\0/
+
/10\
\00/
·x1 +
/10\
\00/
·x2 +
/00\
\00/
·x3

POL(c) =
/0\
\0/

POL(true) =
/0\
\0/

POL(active(x1)) =
/0\
\0/
+
/10\
\00/
·x1

The following usable rules [FROCOS05] were oriented:

mark(true) → active(true)
mark(c) → active(c)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
active(f(X)) → mark(if(X, c, f(true)))
mark(f(X)) → active(f(mark(X)))
active(if(true, X, Y)) → mark(X)

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X)) → MARK(if(X, c, f(true)))
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(X)) → MARK(if(X, c, f(true)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(ACTIVE(x1)) =
/0\
\0/
+
/10\
\00/
·x1

POL(f(x1)) =
/1\
\0/
+
/00\
\01/
·x1

POL(MARK(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(if(x1, x2, x3)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\00/
·x2 +
/00\
\00/
·x3

POL(c) =
/0\
\1/

POL(true) =
/1\
\1/

POL(mark(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(active(x1)) =
/1\
\1/
+
/00\
\11/
·x1

The following usable rules [FROCOS05] were oriented:

if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(if(X1, X2, X3)) → MARK(X2)
MARK(if(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) UsableRulesProof (EQUIVALENT transformation)

We can use the usable rules and reduction pair processor [LPAR04] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its arguments. Then, we can delete all non-usable rules [FROCOS05] from R.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(if(X1, X2, X3)) → MARK(X2)
MARK(if(X1, X2, X3)) → MARK(X1)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MARK(if(X1, X2, X3)) → MARK(X2)
    The graph contains the following edges 1 > 1

  • MARK(if(X1, X2, X3)) → MARK(X1)
    The graph contains the following edges 1 > 1

(33) TRUE