(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X)) → MARK(if(X, c, f(true)))
ACTIVE(f(X)) → IF(X, c, f(true))
ACTIVE(f(X)) → F(true)
ACTIVE(if(true, X, Y)) → MARK(X)
ACTIVE(if(false, X, Y)) → MARK(Y)
MARK(f(X)) → ACTIVE(f(mark(X)))
MARK(f(X)) → F(mark(X))
MARK(f(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
MARK(if(X1, X2, X3)) → IF(mark(X1), mark(X2), X3)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)
MARK(c) → ACTIVE(c)
MARK(true) → ACTIVE(true)
MARK(false) → ACTIVE(false)
F(mark(X)) → F(X)
F(active(X)) → F(X)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 7 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(X1, mark(X2), X3) → IF(X1, X2, X3)
IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(X1, mark(X2), X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x2)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > IF1

Status:
mark1: multiset
IF1: multiset

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(X1, X2, mark(X3)) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x2, x3)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > IF2

Status:
mark1: multiset
IF2: [2,1]

The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, active(X2), X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(X1, active(X2), X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x2)
mark(x1)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
active1 > IF1

Status:
active1: multiset
IF1: multiset

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(mark(X1), X2, X3) → IF(X1, X2, X3)
IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(mark(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  IF(x1)
mark(x1)  =  mark(x1)
active(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
mark1 > IF1

Status:
mark1: multiset
IF1: multiset

The following usable rules [FROCOS05] were oriented: none

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(active(X1), X2, X3) → IF(X1, X2, X3)
IF(X1, X2, active(X3)) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(X1, X2, active(X3)) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  x3
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(active(X1), X2, X3) → IF(X1, X2, X3)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


IF(active(X1), X2, X3) → IF(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
IF(x1, x2, x3)  =  x1
active(x1)  =  active(x1)

Recursive path order with status [RPO].
Precedence:
trivial

Status:
active1: multiset

The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(active(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(active(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  F(x1)
active(x1)  =  active(x1)
mark(x1)  =  x1

Recursive path order with status [RPO].
Precedence:
active1 > F1

Status:
active1: multiset
F1: [1]

The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Precedence:
mark1 > F1

Status:
mark1: multiset
F1: multiset

The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(f(X)) → ACTIVE(f(mark(X)))
ACTIVE(f(X)) → MARK(if(X, c, f(true)))
MARK(f(X)) → MARK(X)
MARK(if(X1, X2, X3)) → ACTIVE(if(mark(X1), mark(X2), X3))
ACTIVE(if(true, X, Y)) → MARK(X)
MARK(if(X1, X2, X3)) → MARK(X1)
MARK(if(X1, X2, X3)) → MARK(X2)
ACTIVE(if(false, X, Y)) → MARK(Y)

The TRS R consists of the following rules:

active(f(X)) → mark(if(X, c, f(true)))
active(if(true, X, Y)) → mark(X)
active(if(false, X, Y)) → mark(Y)
mark(f(X)) → active(f(mark(X)))
mark(if(X1, X2, X3)) → active(if(mark(X1), mark(X2), X3))
mark(c) → active(c)
mark(true) → active(true)
mark(false) → active(false)
f(mark(X)) → f(X)
f(active(X)) → f(X)
if(mark(X1), X2, X3) → if(X1, X2, X3)
if(X1, mark(X2), X3) → if(X1, X2, X3)
if(X1, X2, mark(X3)) → if(X1, X2, X3)
if(active(X1), X2, X3) → if(X1, X2, X3)
if(X1, active(X2), X3) → if(X1, X2, X3)
if(X1, X2, active(X3)) → if(X1, X2, X3)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.