(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(X) → IF(X, c, n__f(n__true))
IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__true) → TRUE

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IF(false, X, Y) → ACTIVATE(Y)
ACTIVATE(n__f(X)) → F(activate(X))
F(X) → IF(X, c, n__f(n__true))
ACTIVATE(n__f(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(X) → if(X, c, n__f(n__true))
if(true, X, Y) → X
if(false, X, Y) → activate(Y)
f(X) → n__f(X)
truen__true
activate(n__f(X)) → f(activate(X))
activate(n__true) → true
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.