(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
ACTIVE(pairNs) → CONS(0, incr(oddNs))
ACTIVE(pairNs) → INCR(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(oddNs) → INCR(pairNs)
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ACTIVE(incr(cons(X, XS))) → S(X)
ACTIVE(incr(cons(X, XS))) → INCR(XS)
ACTIVE(take(0, XS)) → MARK(nil)
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(zip(nil, XS)) → MARK(nil)
ACTIVE(zip(X, nil)) → MARK(nil)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → CONS(pair(X, Y), zip(XS, YS))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → PAIR(X, Y)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → ZIP(XS, YS)
ACTIVE(tail(cons(X, XS))) → MARK(XS)
ACTIVE(repItems(nil)) → MARK(nil)
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
ACTIVE(repItems(cons(X, XS))) → CONS(X, cons(X, repItems(XS)))
ACTIVE(repItems(cons(X, XS))) → CONS(X, repItems(XS))
ACTIVE(repItems(cons(X, XS))) → REPITEMS(XS)
MARK(pairNs) → ACTIVE(pairNs)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(0) → ACTIVE(0)
MARK(incr(X)) → ACTIVE(incr(mark(X)))
MARK(incr(X)) → INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
MARK(take(X1, X2)) → TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(nil) → ACTIVE(nil)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
MARK(zip(X1, X2)) → ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → PAIR(mark(X1), mark(X2))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → REPITEMS(mark(X))
MARK(repItems(X)) → MARK(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
INCR(mark(X)) → INCR(X)
INCR(active(X)) → INCR(X)
S(mark(X)) → S(X)
S(active(X)) → S(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)
TAIL(mark(X)) → TAIL(X)
TAIL(active(X)) → TAIL(X)
REPITEMS(mark(X)) → REPITEMS(X)
REPITEMS(active(X)) → REPITEMS(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 9 SCCs with 28 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REPITEMS(active(X)) → REPITEMS(X)
REPITEMS(mark(X)) → REPITEMS(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(active(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(active(X1), X2) → PAIR(X1, X2)
PAIR(X1, active(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(active(X1), X2) → ZIP(X1, X2)
ZIP(X1, active(X2)) → ZIP(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(active(X1), X2) → TAKE(X1, X2)
TAKE(X1, active(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(active(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(tail(cons(X, XS))) → MARK(XS)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(pair(X1, X2)) → ACTIVE(pair(mark(X1), mark(X2)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
cons(x1, x2)  =  cons
ACTIVE(x1)  =  x1
mark(x1)  =  mark
incr(x1)  =  incr
s(x1)  =  s
pairNs  =  pairNs
0  =  0
oddNs  =  oddNs
take(x1, x2)  =  take
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
tail(x1)  =  tail
repItems(x1)  =  repItems
active(x1)  =  x1
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, cons, mark, incr, s, pairNs, oddNs, take, zip, tail, repItems] > 0
[MARK, cons, mark, incr, s, pairNs, oddNs, take, zip, tail, repItems] > pair
[MARK, cons, mark, incr, s, pairNs, oddNs, take, zip, tail, repItems] > nil

Status:
MARK: []
cons: []
mark: []
incr: []
s: []
pairNs: multiset
0: multiset
oddNs: multiset
take: []
zip: []
pair: multiset
tail: []
repItems: []
nil: multiset


The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(tail(cons(X, XS))) → MARK(XS)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK
cons(x1, x2)  =  cons
ACTIVE(x1)  =  x1
mark(x1)  =  mark
incr(x1)  =  incr
s(x1)  =  s
pairNs  =  pairNs
0  =  0
oddNs  =  oddNs
take(x1, x2)  =  take
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
tail(x1)  =  tail
repItems(x1)  =  repItems
active(x1)  =  x1
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, mark, incr, s, pairNs, oddNs, take, zip, pair, tail, repItems] > cons > [0, nil]

Status:
MARK: []
cons: multiset
mark: []
incr: []
s: []
pairNs: multiset
0: multiset
oddNs: multiset
take: []
zip: []
pair: []
tail: []
repItems: []
nil: multiset


The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
MARK(s(X)) → ACTIVE(s(mark(X)))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(tail(cons(X, XS))) → MARK(XS)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(s(X)) → ACTIVE(s(mark(X)))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
incr(x1)  =  incr
cons(x1, x2)  =  cons
MARK(x1)  =  MARK
s(x1)  =  s
pairNs  =  pairNs
0  =  0
oddNs  =  oddNs
mark(x1)  =  mark
take(x1, x2)  =  take
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
tail(x1)  =  tail
repItems(x1)  =  repItems
active(x1)  =  x1
nil  =  nil

Recursive path order with status [RPO].
Quasi-Precedence:
[incr, cons, MARK, pairNs, oddNs, mark, take, zip, tail, repItems, nil] > s
[incr, cons, MARK, pairNs, oddNs, mark, take, zip, tail, repItems, nil] > 0
[incr, cons, MARK, pairNs, oddNs, mark, take, zip, tail, repItems, nil] > pair

Status:
incr: []
cons: []
MARK: []
s: []
pairNs: multiset
0: multiset
oddNs: multiset
mark: []
take: []
zip: []
pair: []
tail: []
repItems: []
nil: multiset


The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(cons(X, XS))) → MARK(cons(s(X), incr(XS)))
MARK(cons(X1, X2)) → MARK(X1)
MARK(pairNs) → ACTIVE(pairNs)
ACTIVE(pairNs) → MARK(cons(0, incr(oddNs)))
MARK(incr(X)) → ACTIVE(incr(mark(X)))
ACTIVE(take(s(N), cons(X, XS))) → MARK(cons(X, take(N, XS)))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → ACTIVE(oddNs)
ACTIVE(oddNs) → MARK(incr(pairNs))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → MARK(cons(pair(X, Y), zip(XS, YS)))
MARK(s(X)) → MARK(X)
MARK(take(X1, X2)) → ACTIVE(take(mark(X1), mark(X2)))
ACTIVE(tail(cons(X, XS))) → MARK(XS)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → ACTIVE(zip(mark(X1), mark(X2)))
ACTIVE(repItems(cons(X, XS))) → MARK(cons(X, cons(X, repItems(XS))))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
MARK(tail(X)) → ACTIVE(tail(mark(X)))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → ACTIVE(repItems(mark(X)))
MARK(repItems(X)) → MARK(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
mark(pairNs) → active(pairNs)
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(0) → active(0)
mark(incr(X)) → active(incr(mark(X)))
mark(oddNs) → active(oddNs)
mark(s(X)) → active(s(mark(X)))
mark(take(X1, X2)) → active(take(mark(X1), mark(X2)))
mark(nil) → active(nil)
mark(zip(X1, X2)) → active(zip(mark(X1), mark(X2)))
mark(pair(X1, X2)) → active(pair(mark(X1), mark(X2)))
mark(tail(X)) → active(tail(mark(X)))
mark(repItems(X)) → active(repItems(mark(X)))
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
incr(mark(X)) → incr(X)
incr(active(X)) → incr(X)
s(mark(X)) → s(X)
s(active(X)) → s(X)
take(mark(X1), X2) → take(X1, X2)
take(X1, mark(X2)) → take(X1, X2)
take(active(X1), X2) → take(X1, X2)
take(X1, active(X2)) → take(X1, X2)
zip(mark(X1), X2) → zip(X1, X2)
zip(X1, mark(X2)) → zip(X1, X2)
zip(active(X1), X2) → zip(X1, X2)
zip(X1, active(X2)) → zip(X1, X2)
pair(mark(X1), X2) → pair(X1, X2)
pair(X1, mark(X2)) → pair(X1, X2)
pair(active(X1), X2) → pair(X1, X2)
pair(X1, active(X2)) → pair(X1, X2)
tail(mark(X)) → tail(X)
tail(active(X)) → tail(X)
repItems(mark(X)) → repItems(X)
repItems(active(X)) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.