0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 DependencyGraphProof (⇔)
↳9 QDP
↳10 QDPOrderProof (⇔)
↳11 QDP
↳12 DependencyGraphProof (⇔)
↳13 QDP
↳14 QDPOrderProof (⇔)
↳15 QDP
↳16 DependencyGraphProof (⇔)
↳17 QDP
↳18 QDP
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
PAIRNS → CONS(0, n__incr(oddNs))
PAIRNS → ODDNS
ODDNS → INCR(pairNs)
ODDNS → PAIRNS
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
INCR(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → CONS(X, n__take(N, activate(XS)))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → CONS(pair(X, Y), n__zip(activate(XS), activate(YS)))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
TAIL(cons(X, XS)) → ACTIVATE(XS)
REPITEMS(cons(X, XS)) → CONS(X, n__cons(X, n__repItems(activate(XS))))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(X1, X2)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ZIP(X1, X2)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
[pairNs, oddNs] > [s1, nzip2, ZIP2, 0, nil, zip2, pair]
tail1 > [s1, nzip2, ZIP2, 0, nil, zip2, pair]
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ZIP(X1, X2)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__repItems(X)) → REPITEMS(X)
[pairNs, oddNs] > 0 > [ACTIVATE1, INCR1, TAKE1, s1, nrepItems1, REPITEMS1, nil, pair, repItems1]
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
[pairNs, oddNs] > [INCR1, ACTIVATE1, ntake2, TAKE1, s1, 0, take2, nil, pair]
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
ACTIVATE(n__incr(X)) → INCR(X)
INCR(cons(X, XS)) → ACTIVATE(XS)
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
PAIRNS → ODDNS
ODDNS → PAIRNS
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X