(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PAIRNS → CONS(0, n__incr(oddNs))
PAIRNS → ODDNS
ODDNS → INCR(pairNs)
ODDNS → PAIRNS
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
INCR(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → CONS(X, n__take(N, activate(XS)))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → CONS(pair(X, Y), n__zip(activate(XS), activate(YS)))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
TAIL(cons(X, XS)) → ACTIVATE(XS)
REPITEMS(cons(X, XS)) → CONS(X, n__cons(X, n__repItems(activate(XS))))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(X1, X2)
ACTIVATE(n__cons(X1, X2)) → CONS(X1, X2)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 8 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ZIP(X1, X2)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__repItems(X)) → REPITEMS(X)
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) Obligation:
Q DP problem:
The TRS P consists of the following rules:
PAIRNS → ODDNS
ODDNS → PAIRNS
The TRS R consists of the following rules:
pairNs → cons(0, n__incr(oddNs))
oddNs → incr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__zip(X1, X2)) → zip(X1, X2)
activate(n__cons(X1, X2)) → cons(X1, X2)
activate(n__repItems(X)) → repItems(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.