(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ODDNSA__INCR(a__pairNs)
A__ODDNSA__PAIRNS
A__INCR(cons(X, XS)) → MARK(X)
A__TAKE(s(N), cons(X, XS)) → MARK(X)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)
A__TAIL(cons(X, XS)) → MARK(XS)
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(pairNs) → A__PAIRNS
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
MARK(repItems(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__INCR(cons(X, XS)) → MARK(X)
MARK(incr(X)) → A__INCR(mark(X))
MARK(incr(X)) → MARK(X)
MARK(oddNs) → A__ODDNS
A__ODDNSA__INCR(a__pairNs)
MARK(take(X1, X2)) → A__TAKE(mark(X1), mark(X2))
A__TAKE(s(N), cons(X, XS)) → MARK(X)
MARK(take(X1, X2)) → MARK(X1)
MARK(take(X1, X2)) → MARK(X2)
MARK(zip(X1, X2)) → A__ZIP(mark(X1), mark(X2))
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(X)
MARK(zip(X1, X2)) → MARK(X1)
MARK(zip(X1, X2)) → MARK(X2)
MARK(tail(X)) → A__TAIL(mark(X))
A__TAIL(cons(X, XS)) → MARK(XS)
MARK(tail(X)) → MARK(X)
MARK(repItems(X)) → A__REPITEMS(mark(X))
A__REPITEMS(cons(X, XS)) → MARK(X)
MARK(repItems(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
MARK(pair(X1, X2)) → MARK(X1)
MARK(pair(X1, X2)) → MARK(X2)
A__ZIP(cons(X, XS), cons(Y, YS)) → MARK(Y)

The TRS R consists of the following rules:

a__pairNscons(0, incr(oddNs))
a__oddNsa__incr(a__pairNs)
a__incr(cons(X, XS)) → cons(s(mark(X)), incr(XS))
a__take(0, XS) → nil
a__take(s(N), cons(X, XS)) → cons(mark(X), take(N, XS))
a__zip(nil, XS) → nil
a__zip(X, nil) → nil
a__zip(cons(X, XS), cons(Y, YS)) → cons(pair(mark(X), mark(Y)), zip(XS, YS))
a__tail(cons(X, XS)) → mark(XS)
a__repItems(nil) → nil
a__repItems(cons(X, XS)) → cons(mark(X), cons(X, repItems(XS)))
mark(pairNs) → a__pairNs
mark(incr(X)) → a__incr(mark(X))
mark(oddNs) → a__oddNs
mark(take(X1, X2)) → a__take(mark(X1), mark(X2))
mark(zip(X1, X2)) → a__zip(mark(X1), mark(X2))
mark(tail(X)) → a__tail(mark(X))
mark(repItems(X)) → a__repItems(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(0) → 0
mark(s(X)) → s(mark(X))
mark(nil) → nil
mark(pair(X1, X2)) → pair(mark(X1), mark(X2))
a__pairNspairNs
a__incr(X) → incr(X)
a__oddNsoddNs
a__take(X1, X2) → take(X1, X2)
a__zip(X1, X2) → zip(X1, X2)
a__tail(X) → tail(X)
a__repItems(X) → repItems(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.