(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

pairNscons(0, n__incr(n__oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNsn__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIRNSCONS(0, n__incr(n__oddNs))
ODDNSINCR(pairNs)
ODDNSPAIRNS
INCR(cons(X, XS)) → CONS(s(X), n__incr(activate(XS)))
INCR(cons(X, XS)) → ACTIVATE(XS)
TAKE(s(N), cons(X, XS)) → CONS(X, n__take(N, activate(XS)))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → CONS(pair(X, Y), n__zip(activate(XS), activate(YS)))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
TAIL(cons(X, XS)) → ACTIVATE(XS)
REPITEMS(cons(X, XS)) → CONS(X, n__cons(X, n__repItems(activate(XS))))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → CONS(activate(X1), X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__repItems(X)) → REPITEMS(activate(X))
ACTIVATE(n__repItems(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

pairNscons(0, n__incr(n__oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNsn__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ODDNSINCR(pairNs)
INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(activate(X))
ACTIVATE(n__incr(X)) → ACTIVATE(X)
ACTIVATE(n__oddNs) → ODDNS
ACTIVATE(n__take(X1, X2)) → TAKE(activate(X1), activate(X2))
TAKE(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__take(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__zip(X1, X2)) → ZIP(activate(X1), activate(X2))
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__zip(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__cons(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__repItems(X)) → REPITEMS(activate(X))
REPITEMS(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__repItems(X)) → ACTIVATE(X)
ZIP(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

pairNscons(0, n__incr(n__oddNs))
oddNsincr(pairNs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, n__take(N, activate(XS)))
zip(nil, XS) → nil
zip(X, nil) → nil
zip(cons(X, XS), cons(Y, YS)) → cons(pair(X, Y), n__zip(activate(XS), activate(YS)))
tail(cons(X, XS)) → activate(XS)
repItems(nil) → nil
repItems(cons(X, XS)) → cons(X, n__cons(X, n__repItems(activate(XS))))
incr(X) → n__incr(X)
oddNsn__oddNs
take(X1, X2) → n__take(X1, X2)
zip(X1, X2) → n__zip(X1, X2)
cons(X1, X2) → n__cons(X1, X2)
repItems(X) → n__repItems(X)
activate(n__incr(X)) → incr(activate(X))
activate(n__oddNs) → oddNs
activate(n__take(X1, X2)) → take(activate(X1), activate(X2))
activate(n__zip(X1, X2)) → zip(activate(X1), activate(X2))
activate(n__cons(X1, X2)) → cons(activate(X1), X2)
activate(n__repItems(X)) → repItems(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.