(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(pairNs) → CONS(0, incr(oddNs))
ACTIVE(pairNs) → INCR(oddNs)
ACTIVE(oddNs) → INCR(pairNs)
ACTIVE(incr(cons(X, XS))) → CONS(s(X), incr(XS))
ACTIVE(incr(cons(X, XS))) → S(X)
ACTIVE(incr(cons(X, XS))) → INCR(XS)
ACTIVE(take(s(N), cons(X, XS))) → CONS(X, take(N, XS))
ACTIVE(take(s(N), cons(X, XS))) → TAKE(N, XS)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → CONS(pair(X, Y), zip(XS, YS))
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → PAIR(X, Y)
ACTIVE(zip(cons(X, XS), cons(Y, YS))) → ZIP(XS, YS)
ACTIVE(repItems(cons(X, XS))) → CONS(X, cons(X, repItems(XS)))
ACTIVE(repItems(cons(X, XS))) → CONS(X, repItems(XS))
ACTIVE(repItems(cons(X, XS))) → REPITEMS(XS)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(incr(X)) → INCR(active(X))
ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → TAKE(active(X1), X2)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → TAKE(X1, active(X2))
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(zip(X1, X2)) → ZIP(active(X1), X2)
ACTIVE(zip(X1, X2)) → ACTIVE(X1)
ACTIVE(zip(X1, X2)) → ZIP(X1, active(X2))
ACTIVE(zip(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → PAIR(active(X1), X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → PAIR(X1, active(X2))
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → TAIL(active(X))
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → REPITEMS(active(X))
ACTIVE(repItems(X)) → ACTIVE(X)
CONS(mark(X1), X2) → CONS(X1, X2)
INCR(mark(X)) → INCR(X)
S(mark(X)) → S(X)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(X1, mark(X2)) → TAKE(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(X1, mark(X2)) → ZIP(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(X1, mark(X2)) → PAIR(X1, X2)
TAIL(mark(X)) → TAIL(X)
REPITEMS(mark(X)) → REPITEMS(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(incr(X)) → INCR(proper(X))
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(take(X1, X2)) → TAKE(proper(X1), proper(X2))
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(zip(X1, X2)) → ZIP(proper(X1), proper(X2))
PROPER(zip(X1, X2)) → PROPER(X1)
PROPER(zip(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PAIR(proper(X1), proper(X2))
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → TAIL(proper(X))
PROPER(tail(X)) → PROPER(X)
PROPER(repItems(X)) → REPITEMS(proper(X))
PROPER(repItems(X)) → PROPER(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
INCR(ok(X)) → INCR(X)
S(ok(X)) → S(X)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
ZIP(ok(X1), ok(X2)) → ZIP(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
TAIL(ok(X)) → TAIL(X)
REPITEMS(ok(X)) → REPITEMS(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 11 SCCs with 35 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REPITEMS(ok(X)) → REPITEMS(X)
REPITEMS(mark(X)) → REPITEMS(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


REPITEMS(mark(X)) → REPITEMS(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
REPITEMS(x1)  =  REPITEMS(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > mark1 > REPITEMS1
active1 > oddNs > pairNs > mark1 > REPITEMS1
active1 > oddNs > incr1 > cons2 > pair2 > mark1 > REPITEMS1
active1 > oddNs > incr1 > cons2 > repItems1 > mark1 > REPITEMS1
active1 > oddNs > incr1 > s1 > mark1 > REPITEMS1
active1 > take2 > cons2 > pair2 > mark1 > REPITEMS1
active1 > take2 > cons2 > repItems1 > mark1 > REPITEMS1
active1 > zip2 > cons2 > pair2 > mark1 > REPITEMS1
active1 > zip2 > cons2 > repItems1 > mark1 > REPITEMS1
active1 > zip2 > nil > mark1 > REPITEMS1
active1 > tail1 > mark1 > REPITEMS1
top > REPITEMS1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REPITEMS(ok(X)) → REPITEMS(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


REPITEMS(ok(X)) → REPITEMS(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
REPITEMS(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1)
pair(x1, x2)  =  x2
tail(x1)  =  tail(x1)
repItems(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > incr1 > ok1
active1 > pairNs > oddNs
active1 > take2 > nil > ok1
active1 > zip1 > ok1
active1 > tail1 > ok1
proper1 > pairNs > 0
proper1 > pairNs > incr1 > ok1
proper1 > pairNs > oddNs
proper1 > take2 > nil > ok1
proper1 > zip1 > ok1
proper1 > tail1 > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)
TAIL(mark(X)) → TAIL(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(mark(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  TAIL(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > mark1 > TAIL1
active1 > oddNs > pairNs > mark1 > TAIL1
active1 > oddNs > incr1 > cons2 > pair2 > mark1 > TAIL1
active1 > oddNs > incr1 > cons2 > repItems1 > mark1 > TAIL1
active1 > oddNs > incr1 > s1 > mark1 > TAIL1
active1 > take2 > cons2 > pair2 > mark1 > TAIL1
active1 > take2 > cons2 > repItems1 > mark1 > TAIL1
active1 > zip2 > cons2 > pair2 > mark1 > TAIL1
active1 > zip2 > cons2 > repItems1 > mark1 > TAIL1
active1 > zip2 > nil > mark1 > TAIL1
active1 > tail1 > mark1 > TAIL1
top > TAIL1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAIL(ok(X)) → TAIL(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAIL(ok(X)) → TAIL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAIL(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1)
pair(x1, x2)  =  x2
tail(x1)  =  tail(x1)
repItems(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > incr1 > ok1
active1 > pairNs > oddNs
active1 > take2 > nil > ok1
active1 > zip1 > ok1
active1 > tail1 > ok1
proper1 > pairNs > 0
proper1 > pairNs > incr1 > ok1
proper1 > pairNs > oddNs
proper1 > take2 > nil > ok1
proper1 > zip1 > ok1
proper1 > tail1 > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(X1, mark(X2)) → PAIR(X1, X2)
PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(X1, mark(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  PAIR(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > incr1 > cons2 > s1 > mark1 > PAIR1
active1 > pairNs > oddNs > PAIR1
active1 > 0 > mark1 > PAIR1
active1 > 0 > nil > PAIR1
active1 > take2 > cons2 > s1 > mark1 > PAIR1
active1 > take2 > nil > PAIR1
active1 > zip2 > cons2 > s1 > mark1 > PAIR1
active1 > zip2 > nil > PAIR1
active1 > zip2 > pair2 > mark1 > PAIR1
active1 > tail1 > mark1 > PAIR1
active1 > repItems1 > cons2 > s1 > mark1 > PAIR1
active1 > repItems1 > nil > PAIR1
top > PAIR1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(mark(X1), X2) → PAIR(X1, X2)
PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(mark(X1), X2) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x1
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > incr1 > s1 > cons2 > mark1 > top
active1 > pairNs > oddNs > mark1 > top
active1 > take2 > cons2 > mark1 > top
active1 > take2 > nil > mark1 > top
active1 > zip2 > cons2 > mark1 > top
active1 > zip2 > nil > mark1 > top
active1 > pair2 > mark1 > top
active1 > repItems1 > cons2 > mark1 > top
active1 > repItems1 > nil > mark1 > top
proper1 > pairNs > 0
proper1 > pairNs > incr1 > s1 > cons2 > mark1 > top
proper1 > pairNs > oddNs > mark1 > top
proper1 > take2 > cons2 > mark1 > top
proper1 > take2 > nil > mark1 > top
proper1 > zip2 > cons2 > mark1 > top
proper1 > zip2 > nil > mark1 > top
proper1 > pair2 > mark1 > top
proper1 > repItems1 > cons2 > mark1 > top
proper1 > repItems1 > nil > mark1 > top

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PAIR(ok(X1), ok(X2)) → PAIR(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PAIR(x1, x2)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  cons(x2)
0  =  0
incr(x1)  =  x1
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  x2
nil  =  nil
zip(x1, x2)  =  x2
pair(x1, x2)  =  x2
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > nil > ok1
active1 > oddNs > pairNs > ok1
active1 > repItems1 > cons1 > ok1
active1 > repItems1 > nil > ok1
top > proper1 > pairNs > ok1
top > proper1 > repItems1 > cons1 > ok1
top > proper1 > repItems1 > nil > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)
ZIP(ok(X1), ok(X2)) → ZIP(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZIP(ok(X1), ok(X2)) → ZIP(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZIP(x1, x2)  =  x1
mark(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > oddNs > incr1 > ok1
active1 > cons1 > incr1 > ok1
active1 > cons1 > zip2 > nil > ok1
active1 > cons1 > zip2 > pair1 > ok1
active1 > cons1 > repItems1 > ok1
active1 > take1 > nil > ok1
active1 > tail1 > ok1
proper1 > pairNs > 0
proper1 > pairNs > oddNs > incr1 > ok1
proper1 > cons1 > incr1 > ok1
proper1 > cons1 > zip2 > nil > ok1
proper1 > cons1 > zip2 > pair1 > ok1
proper1 > cons1 > repItems1 > ok1
proper1 > take1 > nil > ok1
proper1 > tail1 > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZIP(X1, mark(X2)) → ZIP(X1, X2)
ZIP(mark(X1), X2) → ZIP(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZIP(X1, mark(X2)) → ZIP(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZIP(x1, x2)  =  x2
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > oddNs > pairNs > 0 > nil > mark1
active1 > oddNs > pairNs > incr1 > cons2 > mark1
active1 > take2 > cons2 > mark1
active1 > take2 > nil > mark1
active1 > zip2 > cons2 > mark1
active1 > zip2 > nil > mark1
active1 > zip2 > pair2 > mark1
active1 > tail1 > mark1
active1 > repItems1 > cons2 > mark1
active1 > repItems1 > nil > mark1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ZIP(mark(X1), X2) → ZIP(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ZIP(mark(X1), X2) → ZIP(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ZIP(x1, x2)  =  ZIP(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
ZIP1 > nil
active1 > 0 > mark1 > top > nil
active1 > 0 > ok1 > nil
active1 > oddNs > pairNs > cons2 > mark1 > top > nil
active1 > oddNs > pairNs > cons2 > ok1 > nil
active1 > oddNs > pairNs > incr1 > mark1 > top > nil
active1 > oddNs > pairNs > incr1 > ok1 > nil
active1 > s1 > take2 > cons2 > mark1 > top > nil
active1 > s1 > take2 > cons2 > ok1 > nil
active1 > zip2 > mark1 > top > nil
active1 > zip2 > ok1 > nil
active1 > pair2 > mark1 > top > nil
active1 > pair2 > ok1 > nil
active1 > repItems1 > cons2 > mark1 > top > nil
active1 > repItems1 > cons2 > ok1 > nil
proper1 > incr1 > mark1 > top > nil
proper1 > incr1 > ok1 > nil
proper1 > s1 > take2 > cons2 > mark1 > top > nil
proper1 > s1 > take2 > cons2 > ok1 > nil
proper1 > zip2 > mark1 > top > nil
proper1 > zip2 > ok1 > nil
proper1 > pair2 > mark1 > top > nil
proper1 > pair2 > ok1 > nil
proper1 > repItems1 > cons2 > mark1 > top > nil
proper1 > repItems1 > cons2 > ok1 > nil

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(X1, mark(X2)) → TAKE(X1, X2)
TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(X1, mark(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > oddNs
active1 > cons2 > incr1 > s1 > mark1 > TAKE1
active1 > cons2 > pair2 > mark1 > TAKE1
active1 > cons2 > repItems1 > mark1 > TAKE1
active1 > cons2 > repItems1 > nil
active1 > 0 > mark1 > TAKE1
active1 > 0 > nil
active1 > take2 > mark1 > TAKE1
active1 > take2 > nil
active1 > zip2 > nil
active1 > zip2 > pair2 > mark1 > TAKE1
active1 > tail1 > mark1 > TAKE1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(mark(X1), X2) → TAKE(X1, X2)
TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(mark(X1), X2) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > mark1
active1 > oddNs > pairNs > cons2 > mark1
active1 > oddNs > pairNs > incr1 > mark1
active1 > take2 > cons2 > mark1
active1 > take2 > nil > mark1
active1 > zip2 > cons2 > mark1
active1 > zip2 > nil > mark1
active1 > zip2 > pair2 > mark1
active1 > repItems1 > cons2 > mark1
active1 > repItems1 > nil > mark1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TAKE(ok(X1), ok(X2)) → TAKE(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TAKE(x1, x2)  =  TAKE(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  cons(x2)
0  =  0
incr(x1)  =  x1
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  x1
nil  =  nil
zip(x1, x2)  =  zip(x1)
pair(x1, x2)  =  pair(x1)
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > nil > ok1 > TAKE1
active1 > oddNs > pairNs > cons1 > ok1 > TAKE1
active1 > s1 > cons1 > ok1 > TAKE1
active1 > zip1 > cons1 > ok1 > TAKE1
active1 > zip1 > nil > ok1 > TAKE1
active1 > zip1 > pair1 > ok1 > TAKE1
active1 > repItems1 > cons1 > ok1 > TAKE1
proper1 > 0 > nil > ok1 > TAKE1
proper1 > oddNs > pairNs > cons1 > ok1 > TAKE1
proper1 > s1 > cons1 > ok1 > TAKE1
proper1 > zip1 > cons1 > ok1 > TAKE1
proper1 > zip1 > nil > ok1 > TAKE1
proper1 > zip1 > pair1 > ok1 > TAKE1
proper1 > repItems1 > cons1 > ok1 > TAKE1
top > TAKE1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(43) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(45) TRUE

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  S(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > mark1 > S1
active1 > oddNs > pairNs > mark1 > S1
active1 > oddNs > incr1 > cons2 > pair2 > mark1 > S1
active1 > oddNs > incr1 > cons2 > repItems1 > mark1 > S1
active1 > oddNs > incr1 > s1 > mark1 > S1
active1 > take2 > cons2 > pair2 > mark1 > S1
active1 > take2 > cons2 > repItems1 > mark1 > S1
active1 > zip2 > cons2 > pair2 > mark1 > S1
active1 > zip2 > cons2 > repItems1 > mark1 > S1
active1 > zip2 > nil > mark1 > S1
active1 > tail1 > mark1 > S1
top > S1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1)
pair(x1, x2)  =  x2
tail(x1)  =  tail(x1)
repItems(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > incr1 > ok1
active1 > pairNs > oddNs
active1 > take2 > nil > ok1
active1 > zip1 > ok1
active1 > tail1 > ok1
proper1 > pairNs > 0
proper1 > pairNs > incr1 > ok1
proper1 > pairNs > oddNs
proper1 > take2 > nil > ok1
proper1 > zip1 > ok1
proper1 > tail1 > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(50) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(52) TRUE

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)
INCR(mark(X)) → INCR(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(mark(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  INCR(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > 0 > mark1 > INCR1
active1 > oddNs > pairNs > mark1 > INCR1
active1 > oddNs > incr1 > cons2 > pair2 > mark1 > INCR1
active1 > oddNs > incr1 > cons2 > repItems1 > mark1 > INCR1
active1 > oddNs > incr1 > s1 > mark1 > INCR1
active1 > take2 > cons2 > pair2 > mark1 > INCR1
active1 > take2 > cons2 > repItems1 > mark1 > INCR1
active1 > zip2 > cons2 > pair2 > mark1 > INCR1
active1 > zip2 > cons2 > repItems1 > mark1 > INCR1
active1 > zip2 > nil > mark1 > INCR1
active1 > tail1 > mark1 > INCR1
top > INCR1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INCR(ok(X)) → INCR(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


INCR(ok(X)) → INCR(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
INCR(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1)
pair(x1, x2)  =  x2
tail(x1)  =  tail(x1)
repItems(x1)  =  x1
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > pairNs > 0
active1 > pairNs > incr1 > ok1
active1 > pairNs > oddNs
active1 > take2 > nil > ok1
active1 > zip1 > ok1
active1 > tail1 > ok1
proper1 > pairNs > 0
proper1 > pairNs > incr1 > ok1
proper1 > pairNs > oddNs
proper1 > take2 > nil > ok1
proper1 > zip1 > ok1
proper1 > tail1 > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(57) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(59) TRUE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  x1
oddNs  =  oddNs
s(x1)  =  x1
take(x1, x2)  =  x2
nil  =  nil
zip(x1, x2)  =  x2
pair(x1, x2)  =  x1
tail(x1)  =  x1
repItems(x1)  =  x1
proper(x1)  =  proper
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > active1 > pairNs
top > active1 > 0 > ok1
top > active1 > oddNs
top > active1 > nil > ok1
top > proper > pairNs
top > proper > 0 > ok1
top > proper > oddNs
top > proper > nil > ok1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(63) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
pairNs  =  pairNs
cons(x1, x2)  =  cons(x1, x2)
0  =  0
incr(x1)  =  incr(x1)
oddNs  =  oddNs
s(x1)  =  s(x1)
take(x1, x2)  =  take(x1, x2)
nil  =  nil
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  repItems(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
CONS1 > nil
active1 > 0 > mark1 > top > nil
active1 > 0 > ok1 > nil
active1 > oddNs > pairNs > cons2 > mark1 > top > nil
active1 > oddNs > pairNs > cons2 > ok1 > nil
active1 > oddNs > pairNs > incr1 > mark1 > top > nil
active1 > oddNs > pairNs > incr1 > ok1 > nil
active1 > s1 > take2 > cons2 > mark1 > top > nil
active1 > s1 > take2 > cons2 > ok1 > nil
active1 > zip2 > mark1 > top > nil
active1 > zip2 > ok1 > nil
active1 > pair2 > mark1 > top > nil
active1 > pair2 > ok1 > nil
active1 > repItems1 > cons2 > mark1 > top > nil
active1 > repItems1 > cons2 > ok1 > nil
proper1 > incr1 > mark1 > top > nil
proper1 > incr1 > ok1 > nil
proper1 > s1 > take2 > cons2 > mark1 > top > nil
proper1 > s1 > take2 > cons2 > ok1 > nil
proper1 > zip2 > mark1 > top > nil
proper1 > zip2 > ok1 > nil
proper1 > pair2 > mark1 > top > nil
proper1 > pair2 > ok1 > nil
proper1 > repItems1 > cons2 > mark1 > top > nil
proper1 > repItems1 > cons2 > ok1 > nil

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(64) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(65) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(66) TRUE

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(zip(X1, X2)) → PROPER(X1)
PROPER(zip(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
PROPER(tail(X)) → PROPER(X)
PROPER(repItems(X)) → PROPER(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X1)
PROPER(take(X1, X2)) → PROPER(X2)
PROPER(zip(X1, X2)) → PROPER(X1)
PROPER(zip(X1, X2)) → PROPER(X2)
PROPER(pair(X1, X2)) → PROPER(X1)
PROPER(pair(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
incr(x1)  =  x1
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
0  =  0
oddNs  =  oddNs
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > active1 > take2 > ok
top > active1 > zip2 > ok
top > active1 > pair2 > ok
top > active1 > pairNs > cons2 > ok
top > active1 > pairNs > 0 > ok
top > active1 > pairNs > oddNs > ok
top > active1 > nil > ok
top > proper1 > cons2 > ok
top > proper1 > take2 > ok
top > proper1 > zip2 > ok
top > proper1 > pair2 > ok
top > proper1 > 0 > ok
top > proper1 > oddNs > ok
top > proper1 > nil > ok

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(incr(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(repItems(X)) → PROPER(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(incr(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
incr(x1)  =  incr(x1)
s(x1)  =  x1
tail(x1)  =  x1
repItems(x1)  =  x1
active(x1)  =  x1
pairNs  =  pairNs
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
0  =  0
oddNs  =  oddNs
take(x1, x2)  =  take
nil  =  nil
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair(x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
PROPER1 > incr1
take > cons1 > pair1 > mark > incr1
take > nil > mark > incr1
zip > proper1 > pairNs > cons1 > pair1 > mark > incr1
zip > proper1 > pairNs > oddNs > mark > incr1
zip > proper1 > 0 > mark > incr1
zip > proper1 > nil > mark > incr1
top > incr1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(repItems(X)) → PROPER(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
PROPER(tail(X)) → PROPER(X)
PROPER(repItems(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
s(x1)  =  s(x1)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
active(x1)  =  x1
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr
oddNs  =  oddNs
take(x1, x2)  =  take
nil  =  nil
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top(x1)

Lexicographic Path Order [LPO].
Precedence:
pairNs > 0
pairNs > incr
oddNs > incr
take > nil
zip > nil

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(73) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(75) TRUE

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(zip(X1, X2)) → ACTIVE(X1)
ACTIVE(zip(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(77) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(take(X1, X2)) → ACTIVE(X1)
ACTIVE(take(X1, X2)) → ACTIVE(X2)
ACTIVE(zip(X1, X2)) → ACTIVE(X1)
ACTIVE(zip(X1, X2)) → ACTIVE(X2)
ACTIVE(pair(X1, X2)) → ACTIVE(X1)
ACTIVE(pair(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
incr(x1)  =  x1
cons(x1, x2)  =  x1
s(x1)  =  x1
take(x1, x2)  =  take(x1, x2)
zip(x1, x2)  =  zip(x1, x2)
pair(x1, x2)  =  pair(x1, x2)
tail(x1)  =  x1
repItems(x1)  =  x1
active(x1)  =  x1
pairNs  =  pairNs
mark(x1)  =  mark
0  =  0
oddNs  =  oddNs
nil  =  nil
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
ACTIVE1 > mark
pairNs > oddNs > mark
0 > nil > mark
proper1 > take2 > mark
proper1 > zip2 > mark
proper1 > pair2 > mark
proper1 > oddNs > mark
top > mark

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(79) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
incr(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  x1
tail(x1)  =  x1
repItems(x1)  =  x1
active(x1)  =  active(x1)
pairNs  =  pairNs
mark(x1)  =  x1
0  =  0
oddNs  =  oddNs
take(x1, x2)  =  take(x2)
nil  =  nil
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > active1 > oddNs > pairNs > 0 > zip
top > active1 > pair > proper1 > cons2 > zip
top > active1 > pair > proper1 > pairNs > 0 > zip
top > active1 > pair > proper1 > take1 > zip
top > active1 > pair > proper1 > nil > zip

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(incr(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(incr(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
incr(x1)  =  incr(x1)
s(x1)  =  x1
tail(x1)  =  x1
repItems(x1)  =  x1
active(x1)  =  x1
pairNs  =  pairNs
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
0  =  0
oddNs  =  oddNs
take(x1, x2)  =  take
nil  =  nil
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair(x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
ACTIVE1 > incr1
take > cons1 > pair1 > mark > incr1
take > nil > mark > incr1
zip > proper1 > pairNs > cons1 > pair1 > mark > incr1
zip > proper1 > pairNs > oddNs > mark > incr1
zip > proper1 > 0 > mark > incr1
zip > proper1 > nil > mark > incr1
top > incr1

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(tail(X)) → ACTIVE(X)
ACTIVE(repItems(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
s(x1)  =  s(x1)
tail(x1)  =  tail(x1)
repItems(x1)  =  repItems(x1)
active(x1)  =  x1
pairNs  =  pairNs
mark(x1)  =  x1
cons(x1, x2)  =  x2
0  =  0
incr(x1)  =  incr
oddNs  =  oddNs
take(x1, x2)  =  take
nil  =  nil
zip(x1, x2)  =  zip
pair(x1, x2)  =  pair
proper(x1)  =  x1
ok(x1)  =  x1
top(x1)  =  top(x1)

Lexicographic Path Order [LPO].
Precedence:
pairNs > 0
pairNs > incr
oddNs > incr
take > nil
zip > nil

The following usable rules [FROCOS05] were oriented:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(84) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(86) TRUE

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(pairNs) → mark(cons(0, incr(oddNs)))
active(oddNs) → mark(incr(pairNs))
active(incr(cons(X, XS))) → mark(cons(s(X), incr(XS)))
active(take(0, XS)) → mark(nil)
active(take(s(N), cons(X, XS))) → mark(cons(X, take(N, XS)))
active(zip(nil, XS)) → mark(nil)
active(zip(X, nil)) → mark(nil)
active(zip(cons(X, XS), cons(Y, YS))) → mark(cons(pair(X, Y), zip(XS, YS)))
active(tail(cons(X, XS))) → mark(XS)
active(repItems(nil)) → mark(nil)
active(repItems(cons(X, XS))) → mark(cons(X, cons(X, repItems(XS))))
active(cons(X1, X2)) → cons(active(X1), X2)
active(incr(X)) → incr(active(X))
active(s(X)) → s(active(X))
active(take(X1, X2)) → take(active(X1), X2)
active(take(X1, X2)) → take(X1, active(X2))
active(zip(X1, X2)) → zip(active(X1), X2)
active(zip(X1, X2)) → zip(X1, active(X2))
active(pair(X1, X2)) → pair(active(X1), X2)
active(pair(X1, X2)) → pair(X1, active(X2))
active(tail(X)) → tail(active(X))
active(repItems(X)) → repItems(active(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
incr(mark(X)) → mark(incr(X))
s(mark(X)) → mark(s(X))
take(mark(X1), X2) → mark(take(X1, X2))
take(X1, mark(X2)) → mark(take(X1, X2))
zip(mark(X1), X2) → mark(zip(X1, X2))
zip(X1, mark(X2)) → mark(zip(X1, X2))
pair(mark(X1), X2) → mark(pair(X1, X2))
pair(X1, mark(X2)) → mark(pair(X1, X2))
tail(mark(X)) → mark(tail(X))
repItems(mark(X)) → mark(repItems(X))
proper(pairNs) → ok(pairNs)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(0) → ok(0)
proper(incr(X)) → incr(proper(X))
proper(oddNs) → ok(oddNs)
proper(s(X)) → s(proper(X))
proper(take(X1, X2)) → take(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(zip(X1, X2)) → zip(proper(X1), proper(X2))
proper(pair(X1, X2)) → pair(proper(X1), proper(X2))
proper(tail(X)) → tail(proper(X))
proper(repItems(X)) → repItems(proper(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
incr(ok(X)) → ok(incr(X))
s(ok(X)) → ok(s(X))
take(ok(X1), ok(X2)) → ok(take(X1, X2))
zip(ok(X1), ok(X2)) → ok(zip(X1, X2))
pair(ok(X1), ok(X2)) → ok(pair(X1, X2))
tail(ok(X)) → ok(tail(X))
repItems(ok(X)) → ok(repItems(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.