(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(X) → G(X)
G(s(X)) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__f(X)) → F(X)
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G(s(X)) → G(X)
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
G(s(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(
x1) =
x1
s(
x1) =
s(
x1)
Lexicographic Path Order [LPO].
Precedence:
trivial
The following usable rules [FROCOS05] were oriented:
none
(7) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(9) TRUE
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(11) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(
x1,
x2) =
SEL(
x1)
s(
x1) =
s(
x1)
cons(
x1,
x2) =
cons(
x2)
activate(
x1) =
activate(
x1)
n__f(
x1) =
n__f(
x1)
f(
x1) =
f(
x1)
g(
x1) =
g(
x1)
0 =
0
Lexicographic Path Order [LPO].
Precedence:
SEL1 > [s1, cons1, activate1, nf1, f1, g1]
0 > [s1, cons1, activate1, nf1, f1, g1]
The following usable rules [FROCOS05] were oriented:
none
(12) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(14) TRUE