(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
Q is empty.
(1) QTRSRRRProof (EQUIVALENT transformation)
Used ordering:
Recursive path order with status [RPO].
Precedence:
sel2 > activate1 > f1 > cons2
sel2 > activate1 > f1 > nf1
sel2 > activate1 > f1 > g1 > 0
sel2 > activate1 > f1 > g1 > s1
Status:
f1: multiset
cons2: multiset
nf1: multiset
g1: [1]
0: multiset
s1: multiset
sel2: [1,2]
activate1: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:
f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X
(2) Obligation:
Q restricted rewrite system:
R is empty.
Q is empty.
(3) RisEmptyProof (EQUIVALENT transformation)
The TRS R is empty. Hence, termination is trivially proven.
(4) TRUE