(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X

Q is empty.

(1) QTRSRRRProof (EQUIVALENT transformation)

Used ordering:
Recursive path order with status [RPO].
Precedence:
0 > s1
sel2 > activate1 > f1 > cons2
sel2 > activate1 > f1 > nf1
sel2 > activate1 > f1 > g1 > s1

Status:
sel2: [1,2]
cons2: multiset
f1: multiset
g1: [1]
nf1: multiset
s1: multiset
activate1: multiset
0: multiset
With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly:

f(X) → cons(X, n__f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
activate(n__f(X)) → f(X)
activate(X) → X


(2) Obligation:

Q restricted rewrite system:
R is empty.
Q is empty.

(3) RisEmptyProof (EQUIVALENT transformation)

The TRS R is empty. Hence, termination is trivially proven.

(4) TRUE