(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(X)) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
SEL(s(X), cons(Y, Z)) → ACTIVATE(Z)
ACTIVATE(n__f(X)) → F(activate(X))
ACTIVATE(n__f(X)) → ACTIVATE(X)
ACTIVATE(n__g(X)) → G(activate(X))
ACTIVATE(n__g(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 3 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(s(X)) → G(X)

The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(s(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
G1 > [s1, cons2, nf1, ng1]
sel2 > activate1 > f1 > [s1, cons2, nf1, ng1]
sel2 > activate1 > [g1, 0] > [s1, cons2, nf1, ng1]

Status:
G1: [1]
s1: [1]
f1: [1]
cons2: [2,1]
nf1: [1]
ng1: [1]
g1: [1]
0: []
sel2: [1,2]
activate1: [1]


The following usable rules [FROCOS05] were oriented:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__g(X)) → ACTIVATE(X)
ACTIVATE(n__f(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__g(X)) → ACTIVATE(X)
ACTIVATE(n__f(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__g(x1)  =  n__g(x1)
n__f(x1)  =  n__f(x1)
f(x1)  =  f(x1)
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
activate(x1)  =  activate(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [ng1, nf1, cons2, s1]
sel2 > activate1 > f1 > [ng1, nf1, cons2, s1]
sel2 > activate1 > g1 > [ng1, nf1, cons2, s1]

Status:
ng1: [1]
nf1: [1]
f1: [1]
cons2: [1,2]
g1: [1]
0: []
s1: [1]
sel2: [1,2]
activate1: [1]


The following usable rules [FROCOS05] were oriented:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))

The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(X), cons(Y, Z)) → SEL(X, activate(Z))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1)
s(x1)  =  s(x1)
cons(x1, x2)  =  cons(x1, x2)
activate(x1)  =  activate(x1)
f(x1)  =  f(x1)
n__f(x1)  =  n__f(x1)
n__g(x1)  =  n__g(x1)
g(x1)  =  g(x1)
0  =  0
sel(x1, x2)  =  sel(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
0 > [SEL1, s1]
sel2 > activate1 > f1 > cons2 > [SEL1, s1]
sel2 > activate1 > f1 > nf1 > [SEL1, s1]
sel2 > activate1 > f1 > ng1 > [SEL1, s1]
sel2 > activate1 > g1 > ng1 > [SEL1, s1]

Status:
SEL1: [1]
s1: [1]
cons2: [2,1]
activate1: [1]
f1: [1]
nf1: [1]
ng1: [1]
g1: [1]
0: []
sel2: [1,2]


The following usable rules [FROCOS05] were oriented:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

f(X) → cons(X, n__f(n__g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, activate(Z))
f(X) → n__f(X)
g(X) → n__g(X)
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE