(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(f(X)) → CONS(X, f(g(X)))
ACTIVE(f(X)) → F(g(X))
ACTIVE(f(X)) → G(X)
ACTIVE(g(0)) → S(0)
ACTIVE(g(s(X))) → S(s(g(X)))
ACTIVE(g(s(X))) → S(g(X))
ACTIVE(g(s(X))) → G(X)
ACTIVE(sel(s(X), cons(Y, Z))) → SEL(X, Z)
ACTIVE(f(X)) → F(active(X))
ACTIVE(f(X)) → ACTIVE(X)
ACTIVE(cons(X1, X2)) → CONS(active(X1), X2)
ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(g(X)) → G(active(X))
ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → SEL(active(X1), X2)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → SEL(X1, active(X2))
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
F(mark(X)) → F(X)
CONS(mark(X1), X2) → CONS(X1, X2)
G(mark(X)) → G(X)
S(mark(X)) → S(X)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(X1, mark(X2)) → SEL(X1, X2)
PROPER(f(X)) → F(proper(X))
PROPER(f(X)) → PROPER(X)
PROPER(cons(X1, X2)) → CONS(proper(X1), proper(X2))
PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → SEL(proper(X1), proper(X2))
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
F(ok(X)) → F(X)
CONS(ok(X1), ok(X2)) → CONS(X1, X2)
G(ok(X)) → G(X)
S(ok(X)) → S(X)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 8 SCCs with 21 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(X1, mark(X2)) → SEL(X1, X2)
SEL(mark(X1), X2) → SEL(X1, X2)
SEL(ok(X1), ok(X2)) → SEL(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
SEL(x1, x2)  =  SEL(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
f(x1)  =  f(x1)
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  x1
0  =  0
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
SEL2 > ok1
[active1, top] > [cons2, sel2, proper1] > [mark1, f1] > ok1
[active1, top] > 0 > [mark1, f1] > ok1


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
f(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > cons2 > sel2 > [mark1, g1, s1, top]
0 > [mark1, g1, s1, top]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
f(x1)  =  f(x1)
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[sel1, proper1] > cons1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > 0


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)
G(mark(X)) → G(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(mark(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
f(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > cons2 > sel2 > [mark1, g1, s1, top]
0 > [mark1, g1, s1, top]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(ok(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
f(x1)  =  f(x1)
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[sel1, proper1] > cons1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > 0


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  CONS(x1)
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
f(x1)  =  f(x1)
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  x1
0  =  0
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > active1 > f1 > mark1
top > active1 > cons2 > sel2 > mark1
top > active1 > 0 > mark1


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(ok(X1), ok(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(ok(X1), ok(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
CONS(x1, x2)  =  x2
ok(x1)  =  ok(x1)
active(x1)  =  active(x1)
f(x1)  =  x1
mark(x1)  =  mark
cons(x1, x2)  =  x1
g(x1)  =  g(x1)
0  =  0
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[active1, top] > mark > g1 > ok1
[active1, top] > mark > g1 > 0
[active1, top] > mark > sel2 > ok1
proper1 > g1 > ok1
proper1 > g1 > 0
proper1 > sel2 > ok1


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X)) → F(X)
F(mark(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(mark(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
ok(x1)  =  x1
mark(x1)  =  mark(x1)
active(x1)  =  active(x1)
f(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
active1 > cons2 > sel2 > [mark1, g1, s1, top]
0 > [mark1, g1, s1, top]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X)) → F(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(ok(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
F(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
f(x1)  =  f(x1)
mark(x1)  =  mark
cons(x1, x2)  =  cons(x2)
g(x1)  =  g(x1)
0  =  0
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1)
proper(x1)  =  proper(x1)
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[sel1, proper1] > cons1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > [ok1, f1, mark, top]
[sel1, proper1] > s1 > g1 > 0


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(f(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(g(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(cons(X1, X2)) → PROPER(X1)
PROPER(f(X)) → PROPER(X)
PROPER(cons(X1, X2)) → PROPER(X2)
PROPER(s(X)) → PROPER(X)
PROPER(sel(X1, X2)) → PROPER(X1)
PROPER(sel(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
cons(x1, x2)  =  cons(x1, x2)
f(x1)  =  f(x1)
g(x1)  =  x1
s(x1)  =  s(x1)
sel(x1, x2)  =  sel(x1, x2)
active(x1)  =  x1
mark(x1)  =  mark
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
proper1 > [s1, sel2, ok, top] > cons2 > [f1, mark]
proper1 > 0 > [f1, mark]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(g(X)) → PROPER(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(g(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  active(x1)
f(x1)  =  f
mark(x1)  =  mark
cons(x1, x2)  =  cons
0  =  0
s(x1)  =  s
sel(x1, x2)  =  sel(x2)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
[g1, active1, s, proper1] > [f, cons, 0, sel1, ok] > mark > top


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(f(X)) → ACTIVE(X)
ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(sel(X1, X2)) → ACTIVE(X1)
ACTIVE(sel(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
f(x1)  =  x1
g(x1)  =  x1
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
active(x1)  =  active(x1)
mark(x1)  =  mark
0  =  0
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
ACTIVE1 > sel2
active1 > mark > sel2
active1 > 0 > sel2
[proper1, ok, top] > 0 > sel2


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(f(X)) → ACTIVE(X)
ACTIVE(g(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
cons(x1, x2)  =  x1
f(x1)  =  x1
g(x1)  =  x1
s(x1)  =  s(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark
0  =  0
sel(x1, x2)  =  sel(x1)
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > [0, proper1, ok] > [active1, sel1] > mark > [ACTIVE1, s1]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(f(X)) → ACTIVE(X)
ACTIVE(g(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(g(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
cons(x1, x2)  =  x1
f(x1)  =  x1
g(x1)  =  g(x1)
active(x1)  =  x1
mark(x1)  =  mark
0  =  0
s(x1)  =  x1
sel(x1, x2)  =  x2
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
0 > ok > [proper1, top] > [g1, mark]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)
ACTIVE(f(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(f(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
cons(x1, x2)  =  x1
f(x1)  =  f(x1)
active(x1)  =  active(x1)
mark(x1)  =  mark
g(x1)  =  x1
0  =  0
s(x1)  =  s
sel(x1, x2)  =  sel
proper(x1)  =  proper(x1)
ok(x1)  =  ok
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
0 > [active1, s, sel, proper1, ok, top] > [f1, mark]


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(cons(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(cons(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
cons(x1, x2)  =  cons(x1)
active(x1)  =  active(x1)
f(x1)  =  f(x1)
mark(x1)  =  mark
g(x1)  =  x1
0  =  0
s(x1)  =  x1
sel(x1, x2)  =  sel(x1, x2)
proper(x1)  =  proper(x1)
ok(x1)  =  x1
top(x1)  =  top

Lexicographic Path Order [LPO].
Precedence:
top > [active1, mark] > proper1 > f1 > cons1 > sel2
top > [active1, mark] > proper1 > 0


The following usable rules [FROCOS05] were oriented:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

(55) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(57) TRUE

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(f(X)) → mark(cons(X, f(g(X))))
active(g(0)) → mark(s(0))
active(g(s(X))) → mark(s(s(g(X))))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(f(X)) → f(active(X))
active(cons(X1, X2)) → cons(active(X1), X2)
active(g(X)) → g(active(X))
active(s(X)) → s(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
f(mark(X)) → mark(f(X))
cons(mark(X1), X2) → mark(cons(X1, X2))
g(mark(X)) → mark(g(X))
s(mark(X)) → mark(s(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
proper(f(X)) → f(proper(X))
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(g(X)) → g(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
f(ok(X)) → ok(f(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
g(ok(X)) → ok(g(X))
s(ok(X)) → ok(s(X))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.